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Abstract—A plant with unstable zeros is known to be difficult
to be controlled, because of the initial undershoot of its step
response and the unstable poles in its inversion system. There
are two reasons why a plant has unstable zeros in the discrete
time domain: 1) non-collocation of actuators and sensors, 2)
discretization by zero-order hold. Addressing problems 1) and
2) simultaneously, approximate and discrete-time stable inversion
methods have been proposed as model-based feedforward control
for unstable zeros. However, the approximated inversion methods
compromise tracking performance, and the discrete-time stable
inversion methods obtain oscillatory control inputs owing to the
direct cancellation of discretization zeros. Therefore, this paper
proposes a preactuated multirate feedforward control, which is
an independent stable inversion of the two types of zeros: unstable
intrinsic zeros from non-collocation and unstable discretization
zeros from the zero-order hold. The proposed method combines
both a state trajectory generation based on a time and imaginary
axis reversal to address problem 1), and a multirate feedforward
implementation to address problem 2), independently. Moreover,
this study verifies the tracking performance improvement by
performing simulations and experiments in comparison with well-
known model-based feedforward control methods using a high-
precision motion stage. The role and importance of multirate
feedforward control are also demonstrated by comparing it to a
continuous-time domain approach with preactuation.

Index Terms—Preactuation, Multirate feedforward, Non-
minimum phase system, Unstable zero, Discretization

I. INTRODUCTION

TRACKING control with zero gain and phase errors
between the desired and output trajectories at every sam-

pling point can be achieved, in theory, by model inversion (i.e.,
pole-zero cancellation). However, a plant with unstable (i.e.,
non-minimum phase, NMP) zeros gives rise to an initial under-
shoot when stepped (Fig. 1) and highly oscillatory or unstable
control trajectories when inverted [1], [2]. Unstable zeros of
discrete transfer functions can be classified as 1) intrinsic zeros
corresponding to the plant dynamics (e.g., non-collocated
placement of sensor and actuator) or 2) discretization zeros
due to signal sampling [3]. Note that discretization zeros are
unstable when the relative order of the continuous time plant is
greater than two, even without continuous-time unstable zeros
[4]. Systems with unstable zeros are, for instance, wafer stages
[5], high-precision positioning stages for flat panel display
manufacturing systems [6], [7], hard disk drives [8], boost
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Fig. 1. Step response comparison: P1 is a first order transfer function without
an unstable zero. P2, P3, and P4 have one, two, and three unstable zero(s),
respectively

converters [9], permanent magnet synchronous motors during
six-step operation [10], backward driving cars [11], and pitch
angle regulation of aircraft [12].

Extensive research has been dedicated to the design of track-
ing control methods for systems with NMP zeros. The existing
proposals can be classified as (i) approximate model-inversion
methods and (ii) preactuated model inversion methods [13]. A
straightforward way to implement an approximate inversion is
to cancel stable poles and zeros while ignoring NMP zeros,
i.e., NPZI-method [14]. This approach exhibits both magnitude
and phase errors; hence, zero-magnitude-error tracking control
(ZMETC) [15] and zero-phase-error tracking control (ZPETC)
[16] methods have been proposed and improved upon. Despite
the stable control input, NPZI, ZMETC, and ZPETC may not
yield satisfactory tracking performance owing to the approxi-
mations involved (depending on the system and performance
specifications).

Preactuated model inversion can achieve perfect tracking
with infinite preview (i.e., knowledge of future references) and
preactuation (i.e., actuation applied a time-interval before the
actual output of the system). Continuous-time domain stable
inversion methods are proposed in [17], [18], [19], [20]. This
study unifies these proposals as CPMI or continuous-time pre-
actuated model-inverse methods. However, these approaches
do not consider the effect of the zero-order hold. There lays
the key difference between the CPMI method and the proposed
preactuated multirate feedforward control, which explicitly
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considers the effect of the zero-order hold by constructing
a multirate system. Alternatively, a discrete-time domain ap-
proach is proposed in [21], which compensates both intrinsic
and discretization unstable zeros, simultaneously. This method
can achieve perfect tracking at each sampling point, but it
can cause high oscillations in the inter-sampling behavior by
direct cancellation of the discretization zeros [1], [22]. For
high-precision motion systems such as wafer scanners and
printing systems, preactuation methods have been proposed
and applied, focusing on iterative learning control and linear
periodically time-varying (LPTV) systems [23], [24].

We propose a multirate feedforward with preactuation [25]
and experimentally validate its effectiveness [26]. The pro-
posed method solves problems 1) and 2) independently, re-
gardless of the desired trajectory given it is n−1 differentiable
(where n denotes the order of the nominal plant). This paper
concludes our findings and provides an in-depth review and
comparison of the effectiveness of the independent inversion
with a wide range of established techniques in the field.

First, the unstable intrinsic zeros in the continuous time
domain are offset through a state trajectory generation using
a time-axis reversal. Then, the stable inversion of the dis-
cretization zeros is calculated through a multirate feedforward
approach [27]. Note that the multirate control is commonly
referred to as the set of techniques used to improve feedback
control performance [28], [29], [30]. These methods use mul-
tiple sampling times to enhance the performance/cost trade-off
present in single-rate feedback control. In contrast, this mul-
tirate method is for model-based feedforward control, using
multiples of the sampling time to obtain a stable inversion
of the discretization zeros. A multirate feedforward method is
proposed in [27] and extended to systems with continuous-
time stable zeros [7] and adaptive control [31]. Reference
[8] proposed a multirate NPZI method, which ignores only
intrinsic (continuous time) unstable zeros, whereas the single-
rate NPZI method introduced in III-A and [14] ignores both
intrinsic and discretization zeros simultaneously. This method
[8] constructs a stable inversion of the discretization zeros;
however, it is still affected by the approximation of the
unstable intrinsic zeros. The proposal described in this paper
goes a step further, improving upon the model inversion and
subsequently tracking errors of systems with non-minimum
phase zeros. It is an independent stable inversion for unstable
intrinsic zeros and discretization zeros, which are inverted by
preactuation and multirate feedforward, respectively.

To demonstrate the effectiveness, this paper thoroughly
compares the proposed method with both approximate and
preactuated model inversion methods by simulations and ex-
periments. This paper shows that it is impossible to com-
pensate for the zero-order hold delay by only previewing
the reference of CPMI method. The considered system has
several intrinsic and discretization unstable zeros for which
conventional approximate methods are unable to achieve per-
fect tracking. Simulation and experimental results show that
the proposed method effectively reduces tracking errors. Note
that the performance of model-based methods including the
proposed method is affected by modeling errors, which can
be mitigated by feedback control. However, because of the

presence of continuous time unstable zeros in the lower fre-
quency range, it is difficult to design high-bandwidth feedback
controllers. Hence, for a system with unstable zeros, precise
system identification inherently plays a crucial role. Albeit,
for the range of applications targeted, extensive modeling and
identification are at present commonly employed.

II. NOTATIONS AND DEFINITIONS

The plant in continuous time domain is defined as Pc(s).
Ps[zs] denotes the discretized plant of Pc(s) by the zero-
order hold with sampling time Tu, where s denotes a complex
variable for Laplace transform and zs = eTus.

A continuous-time transfer function of the nominal plant is

Pn(s) =
B(s)

A(s)
, (1)

where A(s) is nth order and B(s) mth order

A(s) =
sn + an−1s

n−1 · · ·+ a0
b0

B(s) =
bmsm + bm−1s

m−1 + · · ·+ b0
b0

.

(2)

Note that (1) is irreducible. The state and output equations of
(1) are defined as

ẋ(t) = Acx(t) + bcu(t), y(t) = ccx(t). (3)

The discretized plant by a zero-order hold with sampling time
Tu is defined as

x[k + 1] = Asx[k] + bsu[k], y[k] = csx[k] (4)

As = eAcTu , bs =

∫ Tu

0

eAcτdτ · bc, cs = cc. (5)

In the discrete transfer function, it is defined as

Pn[zs] = cs(zsI −As)
−1bs. (6)

III. SINGLE-RATE MODEL-INVERSION METHODS

A. Approximate Model-Inverse Methods

When a nominal plant Pn[zs] discretized by zero-order hold
has an unstable zero, the inversion system in the feedforward
controller P−1

n [zs] becomes unstable. To avoid this problem,
several approximate model-inverse feedforward controllers
P̃−1
n [zs] have been proposed in the literature. A generalized

block diagram is shown in Fig. 2 in which Ty and Tu denote
the sampling and control periods, respectively. In this section,
Ty = Tu because only single-rate (zs = eTus) control methods
are considered. Approximations decompose the nominal plant
in a stable Bst[zs] and unstable part, Bust[zs]

Pn[zs] =
B[zs]

A[zs]
=

Bst[zs]B
ust[zs]

A[zs]
(7)

Bust[zs] = bunu
znu
s + bu(nu−1)z

nu−1
s + · · ·+ bu0, (8)

where nu denotes the order of Bust[zs]. The feedforward
controller is then designed as

Cff [zs] = P̃−1
n [zs] =

z−q
s A[zs]

Bst[zs]B̃ust[zs]
. (9)
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Plant
Approximated plant inverse

Fig. 2. Approximated plant inverse feedforward control configuration, where
Cff [zs] = P̃−1

n [zs]. P̃n[zs] is the approximated nominal plant model
without unstable zeros. Pc(s) and Cfb[zs] denote the continuous time plant
and discrete time feedback controller, respectively. H and S denote a holder
and a sampler, respectively.
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Fig. 3. Example of tracking control performance of single-rate model-
inversion methods Cff [zs]Ps[zs]z

npre
s , where npre denotes the previewed

number of samples for ZPETC. The plant shown in Fig. 6(b) is used for the
case study.

The difference between the three prominent methods (NPZI,
ZPETC and ZMETC) is the design of B̃ust[zs] and q (0 ≤ q ∈
Z). Please refer to Reference [14] for an overview. A Bode
plot of tracking control performances of single-rate model-
inversion methods is shown in Fig. 4, where a plant shown in
Fig. 6(b) is used as a case study.

B. Continuous-time Preactuated Model-Inverse methods

Several continuous-time preactuated model-inverse (CPMI)
methods are proposed in [17], [18], [19], [20]. However, these
papers do not consider the effect of the zero-order hold.
The key difference between CPMI methods and the proposed
method is the zero-order hold consideration by multirate
feedforward control. A block diagram of CPMI method is
shown in Fig. 4.

1) Step 1: Stable-unstable decomposition: B(s)−1 defined
in (2) is decomposed into a stable part F st(s) and an unstable
part F ust(s) as follows:

B(s)−1 =
b0

bmsm + bm−1sm−1 + · · ·+ b0
(10)

= F st(s) + F ust(s), (11)

f st(t) = L−1
[
F st(s)

]
, f̄ust(t) = L−1

[
F ust(−s)

]
, (12)

where L−1 denotes the inverse uni-lateral Laplace transform.
Note that F ust(−s) is stable.

2) Step 2: Stable part feedforward control input: Stable
part feedforward control input is calculated by a convolution
between the reference ACPMIrCPMI(t) and f st(t).

ust
ff (t) =

∫ t

−∞
f st(t− τ)ACPMIrCPMI(τ)dτ, (13)

where

ACPMI =
1

b0

[
a0 a1 · · · an−1 1

]
rCPMI =

[
1 ρ · · · ρn

]T
r(t),

(14)

where ρ denotes the Heaviside operator [33]. Equation (13)
can be written as

ust
ff (t) =

∫ t

0

f st(t− τ)ACPMIrCPMI(τ)dτ, (15)

assuming rCPMI(t) = 0 when t < 0.
3) Step 3: Unstable part feedforward control input:

Unstable part feedforward control input is calculated by
1) a convolution between the time axis reversed reference
ACPMIrCPMI(−τ̄) and the stable signal f̄ust(t̄− τ̄) and 2) a
time axis reversal. This procedure results in an infinity time
preactuation for continuous-time unstable zeros compensation.

uust
ff (t) =

∫ t̄

−∞
f̄ust(t̄− τ̄)ACPMIrCPMI(−τ̄)dτ̄

∣∣∣
t̄=−t

(16)

4) Step 4: Total feedforward control input: Total feedfor-
ward control input is calculated by a sum of the stable and
the unstable part feedforward control input.

uo(t) = ust
ff (t) + uust

ff (t) (17)

Then uff (t) is sampled into uff [k] by a zero-order hold. No
consideration of the zero-order hold causes a delay. This will
be discussed in section V-F and shown in Fig. 11.

IV. PREACTUATED MULTIRATE FEEDFORWARD CONTROL

We propose a multirate feedforward control with preac-
tuation to design a stable inversion feedforward controller
for plants with unstable intrinsic and discretization zeros.
This method solves the unstable zeros inversion problem in
three steps. First, we calculate the controllable canonical form
realization for the nominal plant. Second, the stable inversion
for the unstable intrinsic zeros is calculated using a time
axis reversal and imaginary axis reversal in a continuous time
domain. Then, stable inversion for unstable discretization zeros
is calculated using a multirate feedforward proposed by [27]. A
block diagram of the preactuated multirate feedforward control
is shown in Fig. 5.
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(Stable inversion for continuous-time unstable zeros)

Stable part feedforward control input

Unstable part feedforward control input

++

Plant

−+

+
+

Continuous-time Preactuated Model-Inverse method

Fig. 4. Continuous-time Preactuated Model-Inverse method. The stable inversion of the continuous time plant is calculated thorough the dotted boxed blocks.
Note that this step does not consider the zero-order hold of the plant.

(stable inversion for unstable intrinsic zeros)

State trajectory generation 

with time axis reversal

Stable part state trajectory generation

Unstable part state trajectory generation

++

Multirate feedforward
(stable inversion for unstable discretization zeros)

Plant

−+

+
+

Fig. 5. Proposed preactuated multirate feedforward control. S, H, and L denote a sampler, holder, and lifting operator [32], respectively. z and zs denote
esTr and esTu , where Tr = nTu, respectively.

A. Controllable canonical form realization

We realize the nominal plant shown in (3) as the controllable
canonical form:

x(t) =
[
x1(t) x2(t) · · · xn(t)

]T
,

Ac =


0 1 0 · · · 0

0 0 1 · · · 0

. . .

−a0 −a1 −a2 · · · −an−1


bc =

[
0 0 · · · b0

]T
,

cc =
[
1 b1

b0
· · · bm

b0
0 · · · 0

]
.

(18)

The objective to use the controllable canonical form is to
use the differential relationship of the state vector as shown
in (20).

B. State trajectory xd generation

First, a desired state trajectory xd for the multirate feedfor-
ward is generated. The state trajectory xd is defined as

xd(t) =
[
x1d(t) x2d(t) · · · xnd(t)

]T
. (19)

Owing to the controllable canonical form realization (see (18)),

xd(t) =
[
x1d(t) ρx1d(t) · · · ρn−1x1d(t)

]T
. (20)

According to (3), to track the reference position trajectory
r(t), the desired state trajectory xd(t) should satisfy

r(t) = ccxd(t)

=
[
1 b1

b0
· · · bm

b0
0 · · · 0

]


x1d(t)
ρx1d(t)
ρ2x1d(t)

...
ρn−1x1d(t)

 .

(21)

From (21) and (2), x1d(t) is obtained by

x1d(t) =
1

B(ρ)
r(t). (22)

Therefore, the entire vector xd(t) is obtained by

xd(t) =
1

B(ρ)
r(t), (23)

where

r(t) =
[
r1(t) r2(t) · · · rn(t)

]T
=

[
1 ρ · · · ρn−1

]T
r(t).

(24)

However, (23) has unstable poles when the plant Pn(s) has
unstable zeros. To prevent the diversion of the state trajectory
xd(t), the stable-unstable decomposition and time axis reversal
techniques are applied.
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1) Step 1: Stable-unstable decomposition: Stable-unstable
composition is performed as same as the CPMI method shown
in the section III-B1:

B(s)−1 =
b0

bmsm + bm−1sm−1 + · · ·+ b0
(25)

= F st(s) + F ust(s), (26)

f st(t) = L−1
[
F st(s)

]
, f̄ust(t) = L−1

[
F ust(−s)

]
. (27)

2) Step 2: Stable part state trajectory generation: The
desired state trajectory xst

d (t) for the stable part is forwardly
generated as follows.

xst
d (t) =

[
xst
1d(t) xst

2d(t) · · · xst
nd(t)

]T
=

∫ t

−∞
f st(t− τ)r(τ)dτ (28)

Equation (28) can be written as

xst
d (t) =

∫ t

0

f st(t− τ)r(τ)dτ, (29)

assuming r(t) = 0 when t < 0.
3) Step 3: Unstable part state trajectory generation:

The desired state trajectory xust
d (t) for the unstable part is

generated by

xust
d (t) =

[
xust
1d (t) xust

2d (t) · · · xust
nd (t)

]T
=

∫ t̄

−∞
f̄ust(t̄− τ̄)r(−τ̄)dτ̄

∣∣∣
t̄=−t

. (30)

xust
d (t) is calculated as follows: first, a convolution of the time

reversed reference position trajectory r(−t̄) and the stable
signal f̄ust(t̄) is calculated. Next, the time axis is reversed.
The mathematical proof is provided in [34].

4) Step 4: State trajectory generation: The state trajectory
xd(t) is obtained by

xd(t) = xst
d (t) + xust

d (t). (31)

C. Feedforward input generation from the state trajectory

The effect of unstable discretization zeros can be avoided
using the multirate feedforward control [27]. Fig. 5 shows
that there are three time periods Ty , Tu, and Tr denoting the
periods for y(t), u(t), and r(t), respectively. These periods
are set as Tr = nTu = nTy .

The multirate system of (4) is given as

x[i+ 1] = Ax[i] +Bu[i], y[i] = cx[i], (32)

where

A = An
s , B =

[
An−1

s bs An−2
s bs · · · Asbs bs

]
c = cs, x[i] = x(iTr)

(33)

by calculating the state transition from t = iTr = kTu to
t = (i + 1)Tr = (k + n)Tu. Here, the input vector u[i] is
defined in the lifting form

u[i] =
[
u1[i] u2[i] · · · un[i]

]T
=

[
u(kTu) u((k + 1)Tu) · · · u((k + n− 1)Tu)

]T
.

(34)

Linear encoder

Table

Air guide

Carriage
Linear motors

Linear encoder

(a) High-precision positioning stage.
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Fig. 6. Experimental high-precision positioning stage and its frequency
response function (FRF) data and 8th order model (Lm = 0.300 [m]).
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Fig. 7. Pole-zero map of identified model shown in Fig. 6.

According to (32), the feedforward input uo[i] is obtained
from the previewed state trajectory xd[i+ 1] as follows:

uo[i] = B−1(I − z−1A)xd[i+ 1], (35)

where z = esTr .

V. EXPERIMENTAL VALIDATION

A. Experimental setup

The experimental setup used to verify the proposed theory
is shown in Fig. 6. It is an air-guided single degree-of-freedom
flexible stage driven by a set of linear motors. The position of
the table and the driven carriage are measured by two linear
encoders with 1 nm precision. By using interior or exterior
division, we can measure any vertical imaginary position. In
this paper, the height of the measurement point is set as Lm =
0.300[m] by exterior division to have continuous time unstable
zeros. The applied force, i.e. current, is measured through an
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(a) Bode plot of the open loop system.
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Fig. 8. Feedback control performance. The feedback controller is designed
as a PID controller and a second order shaping filter. The designed gain and
phase margins are 14.2 dB (at 10 Hz) and 37.2 deg (at 2.8 Hz), respectively.

inductive current sensor with a 25A range and quantized with
a 14-bit A/D converter, i.e., 3.05 mA step.

B. System identification

The dominant system dynamics of the setup are modeled
through frequency domain identification techniques; see [35].
First, the non-parametric frequency response is measured from
open-loop experiments using periodic multisine excitations
with quasi-logarithmic spacing to cover the wide frequency
band-of-interest. Subsequently, an 8th order parametric trans-
fer function model Pn(s) is estimated iteratively using a
Levenberg-Marquardt method with a maximum likelihood
criterion. Some additional weighting is applied in the middle
frequency range (10 to 400 Hz) to reflect the region in which
high model accuracy is desired for feedforward design.

The measured frequency response and the estimated 8th
order model are shown in Fig. 6(b). The identified continuous
time pole-zero map is shown in Fig. 7(a), in which Pn(s)
contains continuous time unstable zeros at s = +126, +878
and stable zeros at s = −1090, −120,−92.7 ± 1.20j. Addi-
tionally, the pole-zero map of the discretized transfer function
with Tu = 400 [µs] is shown in Fig. 7(b), in which Ps[zs]
contains an unstable discretization zero.

C. Conditions

The setup has a current controller as inner loop, which has
a 1 kHz bandwidth, with a 12.5 kHz sampling and a position
controller as outer loop with 2.5 kHz sampling. The position
feedforward controllers are designed with Tu = 400 [µs]
sampling time. The position feedback controller is designed
as a proportional-integral-derivative (PID) controller and a
second order shaping filter. The feedback control performance
is shown in Fig. 8, which shows that it is difficult to achieve
high bandwidth for a plant with continuous time unstable zeros
in the low frequency range. This indicates that the feedback
controller cannot help the trajectory tracking performance. The
block diagram shown in Fig. 2 is used for NPZI, ZPETC, and
ZMETC methods. Note that in the configurations of Fig. 2
and 5, without modeling error or disturbances, the output of
the feedback controller Cfb[zs] is zero.

The target trajectory is given as a 0.05 second step reference
interpolated by a 15th order polynomial and is shown in i.e.

Fig. 9(a). As for the CMPI and the proposed methods, the
control input is applied from t = −0.0428[s] to preactuate the
system. This time length is determined by the current sensor
resolution. This is 5.38 times longer than the time constant of
the dominant unstable zero in continuous time domain. The
effect regarding short time preactuation compared to the time
constant of the unstable zeros is discussed in [36].

D. Simulation results

Simulation results are shown in Fig. 9. Fig. 9(f) demon-
strates that the proposed method can achieve perfect tracking
without any undershoot or overshoot. In contrast, Fig. 9(a)
and 9(e) show that the NPZI, ZMETC, and ZPETC controllers
create undershoot and/or overshoot. The FB only case shows
a slow response, which demonstrates that a plant with a
slow continuous unstable zero cannot rely on a FB controller
only for reference tracking. Fig. 10(g) shows that the CMPI
method creates a similar current reference to the proposed
method. However, due to the lack of considering the zero-
order hold, the current reference is delayed compared to the
proposal and it results in the tracking error shown in Fig. 9(f).
Note that these simulations contain no modeling error and/or
disturbances, hence, the FB current is zero for NPZI, ZPETC,
ZMETC, CMPI and the proposed method.

E. Experimental results

The experimental results are shown in Fig. 10. The trend
in the experimental results are in good agreement with the
simulations shown in Fig. 9. From Fig. 10(e) and 10(g), during
preactuation, the output position has almost no motion. After
preactuation, the proposed method has almost no undershoot
or overshoot. As summarized in Table I, the proposed method
is experimentally validated.

Fig. 10(d) and 10(h) show that, except the FB only case, the
feedback current references are quite small compared to the
feedforward current references. This is because the nominal
output yo[k], which is calculated by the feedforward current
reference uo[k] and the nominal plant Pn[zs], almost matches
the actual output y[k] due to the well identified nominal model.

F. Observations of the effect of multirate feedforward

As described above, the feedforward current reference is
similar between the CPMI method and the proposed method
as shown in Fig. 9(g) and 10(g). The difference of the two
methods is the zero-order hold consideration by the multirate
feedforward.

Fig. 11 shows that tracking error comparison between the
proposed method and shifted CPMI methods. It shows that the
zero-order hold delay cannot be compensated by just shifting
the current reference even by a non-integer sample shift. These
results clearly show the importance of multirate feedforward
control, which compensates for the zero-order hold delay. Fig.
11(c) shows that perfect tracking is achieved by the proposed
method for every Tr = nTu.
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Fig. 9. Simulation with 8th order model shown in Fig. 6(b). Note that in (d) and (h), FB current is zero for NPZI, ZPETC, ZMETC, CPMI, and the proposal
due to no modeling error and disturbance assumption.
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Fig. 10. Experiment with the stage shown in Fig. 6. 8th order nominal model is used for feedforward controller design.

TABLE I
MAXIMUM TRACKING ERROR IN µm OF FIGS. 9 AND 10.

FB only NPZI ZMETC ZPETC CPMI Proposal

Sim 1590 1020 1360 658 20.0 0.00475*

Exp 1580 1020 1300 631 72.3 41.1
* Intersample tracking error
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Fig. 11. Error comparison between the proposed method and shifted CPMI method. Dots are illustrated by every Tr = nTu. It shows that the proposed
method achieves the perfect tracking for Tr = nTu, which is not achievable by the CPMI method (simulation).

VI. CONCLUSION

In the discretized domain, there are two types of zeros:
1) the intrinsic zeros which have counterparts in the contin-
uous time domain, 2) the discretization zeros generated by
discretization by the zero-order hold. The proposed preac-
tuated multirate feedforward control deals with problem 1)
and 2) independently. On one hand, the unstable intrinsic
zeros are compensated by the preactuation. On the other
hand, the unstable discretization zeros are compensated by
the multirate feedforward control with preview. Multirate
feedforward controller generates the feedforward input, which
achieves perfect tracking for the designed state trajectory. The
simulation results show that the zero-order hold delay cannot
be compensated by just shifting the reference and underline
the importance of multirate feedforward.

This study experimentally validates the proposed method
using a high-precision positioning stage with continuous time
unstable zeros. Additionally, this system has a discretization
zero. Owing to a well-identified 8th order model, the ex-
perimental results follow the simulations. The experimental
result obtained with the proposed method strongly reduces
the tracking error and achieves almost zero undershoot and
overshoot.
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