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Summary

Iterative learning control (ILC) yields perfect output-tracking performance at sam-
pling instances for systems that perform repetitive tasks. The aim of this paper is
to develop a framework for a state-tracking ILC that mitigates oscillatory intersam-
ple behavior, which is often encountered in output tracking ILC. As a framework
for the analysis, the stability of the iterative domain including the robustness filter
and the asymptotic signal are formulated. In addition, as a framework for the design,
the design method using frequency response data to reduce the modeling effort, the
learning filter design based on inversion, and the specific design procedure of the
robustness filter are presented. The designed method is successfully applied to a
motion system and it is shown that the presented state-tracking ILC provides better
intersample behavior than the standard output-tracking ILC.
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1 INTRODUCTION

Iterative learning control (ILC) can result in a significant improvement in the control performance of systems that perform
repetitive tasks. The tracking error after each trial can be reduced by updating the control input for the next trial utilizing the
error obtained in the previous trial. Consequently, it has been extensively applied to precision machinery, such as semiconductor
lithography systems1,2, machine tools3, industrial printers4, mechatronic imaging systems5, and industrial robots6.

Controllers including ILC are usually implemented as a discrete-time controller with sample and hold device. Therefore,
the design of ILC also often focuses on on-sample performance. The theory of on-sample behaviour of discrete-time systems,
including the monotonic convergence condition for the 2-norm of on-sample tracking performance, has witnessed extensive
development. On the other hand, the control performance itself is evaluated in the continuous time since mechatronic sys-
tems evolve in continuous time. High tracking performance on the sampling instances does not necessarily mean high-tracking
performance between the sampling instances.

Frequency domain design is an intuitive approach to achieve fast convergence and robust convergence7. It offers the advantage
of using frequency response function (FRF) measurements to determine the monotonic convergence condition, thereby reducing
modeling effort required. The analysis of frequency domain design motivates the design of learning filters as exact inverse
models of the system to achieve fast convergence and high asymptotic performance. Because this approach usually focuses on
tracking the output rather than the state variables of the controlled system, it is referred to as an output-tracking ILC in this paper.
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The controlled systems with zero-order hold discretization often have unstable zeros or zero near the stability limit8,9,
which causes problems when attempting to design an inverse system as a learning filter. One design approach is to exploit
an approximate inverse of the system such as zero-phase-error tracking control10 at the cost of tracking performance; while
another approach is applying stable inversion with pre-actuation11, which can achieve on-sample perfect tracking at the cost of
intersample behaviour.

Poor intersample behavior is not desirable because the control performance itself is often evaluated in a continuous time as
the functions of mechatronic systems, such as lithography, printing, and milling, evolve continuously. Consequently, to improve
intersample behavior multirate ILC12 based on optimization has been developed; however, it requires a measurement frequency
that is faster than the control frequency. In contrast, in this paper, the control and measurement frequencies are assumed to be
the same.

Although the output-tracking ILC with stable inversion can achieve high tracking performance on-sample, poor intersample
behavior is often observed due to cancellation of discretization zero near the stability limit. The aim of this paper is to present
a concept of state-tracking ILC including its stability and performance analysis and design guidelines to improve the inter-
sample behaviour. In contrast to the output-tracking ILC, the presented state-tracking ILC achieves output tracking as well as
state tracking after convergence. Consequently, this state tracking enables improved intersample behaviour similar to multirate
feedforward control13,14, which is a feedforward control strategy aiming for perfect state tracking.

The main contribution of this paper is a state tracking ILC framework that improves the intersample behaviour. This is achieved
through the following sub-contributions.

C1 The state-tracking ILC framework based on linear periodically time-varying (LPTV) system analysis is presented. The
key idea of this approach is to achieve perfect state tracking for every 𝑛 samples to improve the intersample behaviour.

C2 Analysis tools for both stability and performance of the state tracking ILC have been developed in Section 3. To facili-
tate the use of FRF measurement data, the LPTV system is transformed into a multi-input multi-output (MIMO) linear
time invariant (LTI) system by exploiting lifting techniques. This allows the stability of the ILC to be determined in the
frequency domain.

C3 Design guidelines that exploit FRF measurements for state tracking ILC are derived in Section 4. The presented guidelines
include a learning filter that yields fast convergence and a robustness filter that guarantees monotonic convergence using
a robustness filter. In addition, model variation can be easily taken into account because robustness filters can be designed
while overlaying multiple frequency response data on a plot of stability conditions.

C4 The effectiveness of the developed method is verified through experiments for both cases involving accurate and inaccurate
models, requiring the use of a robustness filter in Section 5.

This paper extends the preliminary results reported in15 coupled with an iteration domain stability analysis that includes a
robustness filter, which is required in case the model is not sufficiently accurate. In addition, analogous to the design advantages
of output tracking ILC, state-tracking ILC enabled the evaluation of the stability analysis in the iteration domain employing a
nonparametric model, that is, FRF data. This advantage reduces the modeling effort of the user because the frequency response
data are often inexpensive, accurate, and fast to obtain.

1.1 Notations
Let 𝑃 (𝑧) denote a discrete-time, linear time-invariant (LTI), single-input, single-output (SISO) system, expressed as

𝑃 (𝑧) = 𝐶(𝑧𝐼 − 𝐴)−1𝐵 +𝐷, (1)

where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×1, 𝐶 ∈ ℝ1×𝑛, and 𝐷 ∈ ℝ.
Let  denote the set of rational discrete time transfer matrices. The set of real-rational functions bounded on the unit circle

is denoted as ∞. ∞ is the subset of ∞ analytic for |𝑧| > 1.
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FIGURE 1 Time chart of discrete-time lifting for 𝜏 = 3 as an example.

Definition 1 (Discrete-time lifting). Let 𝑢[𝑘] ∈ ℝ denote a discrete-time signal that corresponds to 𝑢(𝑘𝑇𝑠), where 𝑇𝑠 denotes
the sampling time and 𝑘 ∈ ℤ. Further, consider a lifted signal over 𝜏 ∈ ℕ samples denoted by 𝑢[𝑙] = 𝑢[𝑘] with

𝑢[𝑙] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢[𝑙𝜏]
𝑢[𝑙𝜏 + 1]

⋮
𝑢[𝑙𝜏 + 𝜏 − 1]

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ𝜏 , (2)

where 𝑙 ∈ ℤ and  denote the lifting operator, which maps 𝑢 → 𝑢. A time chart is shown in Fig. 1. An inverse lifting operator is
expressed as 𝑢 = −1𝑢. For more details on the definition, see16. Note that lifting over 𝜏 sample multiplies the sampling period
by 1∕𝜏, and inverse lifting over 𝜏 sample multiplies the sampling period by 𝜏.

Lemma 1 (Lifted system in state space). The input/output of the lifted system of 𝑃 over 𝜏 ∈ ℕ samples is 𝑦 = 𝑦 =
(𝑃−1)(𝑢) = 𝑃𝑢. 𝑃 can be obtained from a state-space model, and is denoted as

𝑃
𝑧
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝜏 𝐴𝜏−1𝐵 𝐴𝜏−2𝐵 ⋯ 𝐵
𝐶 𝐷 0 ⋯ 0
𝐶𝐴 𝐶𝐵 𝐷 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝐶𝐴𝜏−1 𝐶𝐴𝜏−2𝐵 𝐶𝐴𝜏−3𝐵 ⋯ 𝐷,

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ 𝜏×𝜏 . (3)

Proof. This follows from successive substitution of (1) [ 16, Section 8.2].

Definition 2 (Downsampling operator). The downsampling operation over 𝜏 samples is defined by

𝑑 ∶ 𝛼[𝑘] → 𝛽[𝑘], 𝛽[𝑘] = 𝛼[𝜏𝑘], 𝑘 ∈ ℤ. (4)

Assumption 1 (Controlled continuous-time system 𝐺𝑐). A system 𝐺𝑐(𝑠) = 𝐶𝐺𝑐
(𝑠𝐼−𝐴𝐺𝑐

)−1𝐵𝐺𝑐
to be controlled is a continuous

time, SISO, strictly proper, LTI system given by minimal realization.

The discrete-time system 𝐺 with 𝐺𝑐 using a zero-order hold with sampling period 𝑇𝑠 is denoted as

𝑥[𝑘 + 1] = 𝐴𝐺𝑥[𝑘] + 𝐵𝐺𝑢[𝑘],
𝑦[𝑘] = 𝐶𝐺𝑥[𝑘],

(5)

where 𝑥[𝑘] ∈ ℝ𝑛, 𝑢[𝑘], 𝑦[𝑘] ∈ ℝ. 𝑥[𝑘], 𝑦[𝑘], and 𝑢[𝑘] correspond to 𝑥(𝑘𝑇𝑠), 𝑦(𝑘𝑇𝑠), and 𝑢(𝑘𝑇𝑠), respectively.

2 PROBLEM FORMULATION

This section presents the formulation of the design requirements of the presented state-tracking ILC framework. First, in Section
2.1, the output-tracking ILC is briefly introduced. Subsequently, Section 2.2 introduces the multirate inversion technique, which
is a key to state-tracking. Further, Section 2.4 presents the design formulation requirements addressed in this paper.
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FIGURE 2 Block diagram of output tracking ILC.

2.1 Frequency domain design of output tracking ILC
The aim of the general ILC algorithm, including17,18,7, is to achieve perfect output tracking at sampling instances for systems
that perform repetitive tasks. It updates the feedforward input over iterations by learning from the tracking error obtained in the
previous iteration. The design aspect offers the advantage of intuitive loop shaping for a robust design using non-parametric
frequency-domain measurements.

The block diagram is shown in Fig. 2. The closed-loop system is stabilized by a feedback controller 𝐾 ∈ ∞. 𝑟 denotes the
trial-invariant reference, and 𝑗 ∈ ℤ≥0 denotes the trial number. Tracking error 𝑒𝑗 at 𝑗-th trial expressed as

𝑒𝑗 = 𝑆𝑟 − 𝐺𝑆𝑓𝑗 , (6)

where 𝑆 = (𝐼 + 𝐺𝐾)−1 denotes the sensitivity function of the closed-loop system. The ILC command during iteration 𝑗 + 1,
𝑓𝑗+1, is typically updated as

𝑓𝑗+1 = 𝑄𝑜(𝑓𝑗 + 𝐿𝑜𝑒𝑗), (7)

where 𝐿𝑜 and 𝑄𝑜 denote the learning filter 𝐿𝑜 ∈ ∞ and the robustness filter 𝑄𝑜 ∈ ∞. In addition, non-causal operation
is allowed for 𝐿𝑜 and 𝑄𝑜 because the ILC update is computed offline.

The error propagation is expressed as

𝑒𝑗+1 = 𝑄𝑜(1 − 𝐺𝑆𝐿𝑜)𝑒𝑗 + (1 −𝑄𝑜)𝑆𝑟, (8)

which converges monotonically in ‖𝑒‖2 if

|𝑄𝑜(𝑒𝑖𝜔)(1 − 𝐺(𝑒𝑖𝜔)𝑆(𝑒𝑖𝜔)𝐿𝑜(𝑒𝑖𝜔))| < 1, ∀𝜔. (9)

An important aspect of the output-tracking ILC in frequency domain design is that the condition (9) can be verified using the
measured frequency response data of 𝐺 and 𝑆, which is fast, accurate, and inexpensive to obtain. This results in a reduction of
the required design effort.

Using (8) and 𝑒∞ = lim𝑗→∞ 𝑒𝑗 , the asymptotic signals 𝑒∞ are obtained as

𝑒∞ =
1 −𝑄𝑜

1 −𝑄𝑜(1 − 𝐺𝑆𝐿𝑜)
𝑆𝑟. (10)

Equations (8) and (10) motivate the design of 𝐿𝑜 = (𝐺𝑆)−1 to realize fast convergence and 𝑄𝑜 = 1 for 𝑒∞ = 0, respectively.
For an even relative order of a continuous plant model, a discretization zero close to 𝑧 = −1 is generated8 in 𝐺; hence, 𝐺𝑆 has
the same zero. Consequently, the force update (7) creates an oscillating control input with 𝐿𝑜 = (𝐺𝑆)−1, which results in poor
intersample behavior, as demonstrated in Section 5.

To summarize, the output-tracking ILC possesses two primary favorable properties: 1) the availability of a trial domain
stability condition (9) and 2) limited design effort requirement using a non-parametric model. However, the primary disadvantage
is that the focus on on-sample output tracking achieved by exploiting the inverse model results in poor intersample behavior.
Thus, these characteristics form the motivation for the problem definition of the state-tracking ILC design in Section 2.4.
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FIGURE 3 Reference 𝑟 and its derivative signal 𝑟̇.
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FIGURE 4 Tracking error of single-rate feedforward con-
trol ( ) and multirate feedforward control ( ). Single-rate
feedforward control achieves perfect output tracking for every
samples ( ). On the other hand, multirate feedforward control
achieves perfect state tracking for every 𝑛 = 2 samples ( ) and
it brings better intersampling performance.

2.2 Multirate inversion
Multirate inversion is a system inversion technique that achieves state tracking and possesses the potential to achieve improved
intersample tracking performance. This section introduces a multirate feedforward control13,14 using multirate inversion that
achieves perfect state tracking for every 𝑛 time instances in a nominal condition. By achieving both output and state tracking, it
is possible to improve the intersample behavior, as demonstrated by the example below.

Example 1 (Single mass motion system). Consider a system 𝐺𝑐 = 1
𝑠2

with sampling time 𝑇𝑠 = 1 and a continuous time
reference, as shown in Fig. 3. The discretized system based on zero-order hold is 𝐺 = 0.5(𝑧+1)

(𝑧−1)2
, with a zero at 𝑧 = −1, which

renders poor intersampling performance when pole-zero cancelation is performed via a single-rate feedforward controller.
Fig. 4 demonstrates tracking error with single-rate and multirate feedforward controllers. To focus on the differences resulting

from feedforward controllers, feedback controllers are not used. The state reference, state, and state tracking errors are expressed
𝑟𝑥 = [𝑟, 𝑟̇]⊤, 𝑥 ∶= [𝑥1, 𝑥2]⊤ = [𝑦, 𝑦̇]⊤, and 𝑒𝑥 ∶= [𝑒𝑥1 , 𝑒𝑥2]

⊤ = [𝑟 − 𝑦, 𝑟̇ − 𝑦̇]⊤, respectively. The single-rate feedforward control
achieves perfect output tracking for every sample, whereas the multirate feedforward control can realize perfect state tracking
for every 𝑛 = 2 sample. Consequently, multirate feedforward control achieves superior intersample behavior at the cost of
on-sample error for odd samples, e.g., 𝑘 = 1, 13.

For the above reasons, for single-rate feedforward control, reference trajectories with discontinuous velocities, such as the one
shown in Fig. 3, have been avoided because of the excitation of the discretization zero. On the other hand, multirate feedforward
control can significantly reduce such intersample oscillations by providing higher-order state trajectory in addition to position
trajectory.

2.3 State tracking ILC setup
The key idea of the presented state-tracking ILC is to achieve perfect state tracking every 𝑛 samples, reminicent to multirate
feedforward control, with the aim to improve the intersample behaviour, which constitutes Contribution C1. In this paper, perfect
state-tracking control is defined as an extension of perfect tracking control (PTC)10,13 to state variables, where the state reference
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FIGURE 5 Block diagram of state tracking ILC. The high-frequency dots and low-frequency dots denote high-rate signal
sampled by 𝑇𝑠 and slow-rate signal sampled by 𝑛𝑇𝑠, respectively.

and the estimated state by the observer match at a specified sample period. In this definition, the effect of measurement noise,
which is trial-varying disturbances, on the observer is not considered.

To this end the ILC setup as depicted in Fig. 5 is considered. Similar to the standard output-tracking ILC shown in Fig. 2, the
state-tracking ILC shown in Fig. 5 comprises a memory, an update law, and a 𝑄𝑠 filter for robustness. There are two sampling
rates in the signal: 1) 𝑇𝑠 drawn as high-frequency dots is the high rate, which is the same as the rate of the control input and
measurement, and 2) 𝑛𝑇𝑠 drawn as low-frequency dots is the low rate in the lifted domain.

A key difference is that the ILC update law that consists of filter 𝐿𝑠 and 𝑄𝑠 is performed in the lifted domain sampled with
sampling time 𝑛𝑇𝑠 to achieve state-tracking, in contrast to the sampling time 𝑇𝑠 in output-tracking ILC. The lines with dense
dots and sparse dots denote signals sampled by 𝑇𝑠 and 𝑛𝑇𝑠, respectively. Hence, a downsampling operator 𝑑 and an inverse
lifting operator −1 for 𝑛 samples are required.

2.4 Problem definition and contributions
The problem addressed in this paper is the development of analysis tools (Contribution C2) and design guidelines (Contribu-
tion C3) for the presented state-tracking ILC (Contribution C1). Because of the multirate setting, the overall system is LPTV;
therefore, standard frequency-based analysis and design techniques for output tracking ILC cannot be employed. The developed
design guidelines exploit frequency response measurement data similar to well-known techniques for output-tracking ILC. In
addition, this paper addresses the verification of state-tracking ILC in experiments using measured frequency response data
(Contribution C4).

3 APPROACH AND ANALYSIS

In this section, a detailed state-tracking ILC approach is presented with the development of the analysis tools for stability and
performance in the iteration domain. This section constitutes Contribution C2.

3.1 Analysis in a single iteration
This section presents the derivation of the characteristics in a single iteration to analyze the performance and stability in the
iterative domain presented in Section 3.2.

The reference 𝑟𝑥 in Fig. 5 denotes state trajectory to be tracked by the state-tracking ILC with the following assumption.
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Assumption 2 (State trajectory 𝑟𝑥). State trajectory 𝑟𝑥 ∈ ℝ𝑛 that satisfies

𝑟[𝑘] = 𝐶𝐺𝑟𝑥[𝑘], ∀𝑘, (11)

is pre-determined, where 𝑟[𝑘] denotes a reference trajectory for the output 𝑦[𝑘].

Remark 1. It is obtained by solving the continuous time state and output equations and results in the inversion of the continuous-
time numerator polynomials of 𝐺𝑐(𝑠), see14.

The state-tracking error estimated by the state observer 𝑂 is suppressed by the state-tracking ILC through iterations. The state
tracking error estimate 𝑒𝑥̂,𝑗 is obtained from the state trajectory 𝑟𝑥 and the estimated state 𝑥̂𝑗 , as defined in next.

Definition 3 (State tracking error estimate). State tracking error estimate 𝑒𝑥̂,𝑗 ∈ ℝ𝑛 at 𝑗-th iteration is obtained by

𝑒𝑥̂,𝑗[𝑘] = 𝑟𝑥[𝑘] − 𝑥̂𝑗[𝑘], (12)

where 𝑥̂𝑗 ∈ ℝ𝑛 denotes state estimate at 𝑗-th iteration by state observer 𝑂 ∈ 𝑛×2
∞

𝑥̂𝑗 = 𝑂
[

𝑓
𝑦𝑗

]

, (13)

where 𝑓 denotes the input of 𝐺, which consists of the ILC and feedback control contributions.

Remark 2. Noncausal operation is allowed for the state observer 𝑂, because the state estimation is performed by off-line
calculation. In addition, a bounded state estimate is obtained through a back-and-forth filtering operation11.

The key idea of state-tracking ILC is to render the transfer characteristic between the lifted control input 𝑓
𝑗

at 𝑗-th iteration
and the estimate of the state-tracking error 𝑒𝑥̂,𝑗 into a square system. It facilitates the design of the inverse system exploited in the
learning algorithm in order to achieve perfect state-tracking. Therefore, 𝑛-sample lifting of the order of the plant is performed
for the closed-loop system.

The lifted version of the force 𝑓𝑗+1 over 𝑛 sample as denoted by 𝑓
𝑗+1

∈ ℝ𝑛 is updated from 𝑗-th state tracking error 𝑒𝑥̂,𝑗 as
defined in next.

Definition 4 (State-tracking ILC force update).

𝑓
𝑗+1

= 𝑄𝑠(𝑓 𝑗
+ 𝐿𝑠𝑒𝑥̂,𝑗), (14)

where 𝑄𝑠 ∈ 𝑛×𝑛
∞ and 𝐿𝑠 ∈ 𝑛×𝑛

∞ denotes a robustness filter and a learning filter, respectively. Apart from equation (7), the
robustness and learning filters are MIMO systems. With regard to 𝑄𝑠 and 𝐿𝑠, non-causal operations are allowed due to offline
computations.

Next, Lemmas 2–3 and Definition 5, which are equations for the lifted domain, are prepared to derive the state-tracking error
estimates in the lifted domain.

Lemma 2 (Lifted state reference 𝑟𝑥 and lifted reference 𝑟). The lifted state reference 𝑟𝑥 and lifted reference 𝑟 satisfy

𝑟 =
(

𝐼𝑛 ⊗𝐶𝐺
)

𝑟𝑥
= 𝐶𝐺𝑟𝑥 (15)

where 𝐼𝑛 and ⊗ denote the 𝑛-by-𝑛 identity matrix and the Kronecker tensor product, respectively.

Proof. It is obtained directly from the output equation 𝑟 = 𝐶𝐺𝑟𝑥 and Definition 1.

Now, the state selection matrix  is defined to select the first-time instance from the lifted state tracking error estimate.

Definition 5 (State selection matrix ). The first sample elements are selected from the lifted signal.

 =
[

𝐼𝑛 𝑂𝑛×𝑛(𝑛−1)
]

∈ ℝ𝑛×𝑛2 , (16)

where 𝑂𝑛×𝑛(𝑛−1) denotes 𝑛-by-𝑛(𝑛 − 1) matrix of zeros.

Lemma 3 (Relationship between lifting operator and state selection matrix). Let ∙ denote a signal with 𝑛 × 1 dimension and
sampled by 𝑇𝑠. The following relationship holds.

𝑑∙ = ∙ = ∙ (17)
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Proof. This is obtained from Definitions 1 and 5. ∙ is the result of lifting of ∙ and is 𝑛2 × 1 signal sampled by 𝑇𝑠∕𝑛. Therefore,
since ∙ is the first 𝑛 samples of ∙ selected, it is an 𝑛 × 1 signal sampled by 𝑇𝑠∕𝑛. This is equivalent to ∙ and 𝑑∙.

From the aforementioned definitions and lemmas, a fundamental equation for the state-tracking ILC that relates state tracking
error estimate, state trajectory, and ILC force in the lifted domain can be derived as follows.

Lemma 4 (State tracking error estimate 𝑒𝑥̂ in lifted domain).

𝑑𝑒𝑥̂,𝑗 = 𝑆𝑥𝑟𝑥 − 𝐽𝑥𝑓 𝑗
, (18)

where

𝑆𝑥 ∶= 
(

𝐼𝑛 − 𝐺𝑜𝐾𝑆𝐶
)

∈ 𝑛×𝑛2
∞ (19)

𝐽𝑥 ∶= 𝐺𝑜𝑆 ∈ 𝑛×𝑛
∞ (20)

and 𝐺𝑜 ∈ 𝑛×1
∞ denotes a transfer function from the control input 𝑓 to the state estimate 𝑥̂𝑗 as follows:

𝑥̂𝑗 = 𝑂
[

𝑓
𝑦𝑗

]

= 𝑂
[

𝑓
𝐺𝑓

]

= 𝑂
[

𝐼𝑛
𝐺

]

𝑓 ∶= 𝐺𝑜𝑓. (21)

Similar to Remark 2, a noncausal operation is allowed for 𝐺𝑜 due to offline calculation.

Proof. State tracking error is composed of feedback and ILC contribution. According to Lemma 2 and Lemma 3,

𝑑𝑒𝑥̂,𝑗 = 𝑑𝑟𝑥 − 𝑑 𝑥̂𝑗 (22)
= 𝑟𝑥 − 𝑥̂𝑗 (23)

= 𝑟𝑥 − 
(

𝐺𝑜𝑆𝑓 𝑗
+ 𝐺𝑜𝐾𝑆𝐶𝑟𝑥

)

(24)

= 
(

𝐼𝑛 − 𝐺𝑜𝐾𝑆𝐶
)

𝑟𝑥 − 𝐺𝑜𝑆𝑓 𝑗
(25)

∶= 𝑆𝑥𝑟𝑥 − 𝐽𝑥𝑓 𝑗
. (26)

Remark 3. Equation (18) simplifies the block diagram in Fig. 5 into the block diagram in Fig. 6. In addition, (18) has the same
structure as (6), where 𝑆𝑥 can be interpreted as a sensitivity function from the lifted state reference to the estimated state tracking
error, and 𝐽𝑥 can be interpreted as a process sensitivity function from the lifted ILC input to the state estimate.

Definition 4 and Lemma 4 enable the stability analysis in the iteration domain.

3.2 Stability analysis
This section derives the convergence condition of the state-tracking ILC in the iteration domain. To this end, state tracking error
and ILC force propagation are formulated.
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Theorem 1 (State tracking error and force propagation). State tracking error propagation and ILC force propagation are
formulated as

𝑑𝑒𝑥̂,𝑗+1 = 𝐽𝑥𝑄𝑠
(

𝐼𝑛 − 𝐿𝑠𝐽𝑥
)

𝑧𝐽−1
𝑥 𝑑𝑒𝑥̂,𝑗 +

(

𝐼𝑛 − 𝐽𝑥𝑄𝑠𝑧𝐽
−1
𝑥

)

𝑆𝑥𝑟𝑥, (27)
𝑓
𝑗+1

= 𝑄𝑠(𝐼𝑛 − 𝐿𝑠𝐽𝑥)𝑓 𝑗
+𝑄𝑠𝐿𝑠𝑆𝑥𝑟𝑥 (28)

where 𝐽𝑥 is invertible and 𝐽𝑥 = 𝑧𝐽𝑥.

The proof follows from Definition 4 and Lemma 4. A proof of the invertibility of 𝐽𝑥 is presented in Section 4.2.
Convergence is defined next.

Definition 6 (Convergence). System (28) is convergent if and only if for all 𝑟𝑥, 𝑓 0
∈ 𝓁2, there exists an asymptotic signal

𝑓
∞
∈ 𝓁2 such that

lim sup
𝑗→∞

‖

‖

‖

‖

𝑓
∞
− 𝑓

𝑗

‖

‖

‖

‖𝓁2

= 0 (29)

A convergence condition of (27) and (28) is given next.

Theorem 2 (Convergence condition). Iterations (27) and (28) converge if and only if

𝜌
(

𝑄𝑠(𝑒𝑖𝜔)(𝐼𝑛 − 𝐿𝑠(𝑒𝑖𝜔)𝐽𝑥(𝑒𝑖𝜔))
)

< 1, ∀𝜔 ∈ [0, 𝜋] (30)

where 𝜌(⋅) denotes the spectral radius, i.e. 𝜌(⋅) = max𝑖 ||𝜆𝑖(⋅)||.

Remark 4. In contrast to equation (9) for the output-tracking ILC that exhibits the SISO system, this equation for the state-
tracking ILC exhibits a MIMO system. This indicates that the MIMO filter 𝑄𝑠 has more design flexibility than 𝑄𝑜, which is a
SISO filter. Its design methodology is presented in Section 4.1.

For proof, see [ 19, Theorem 6]. Monotonic convergence is defined as follows:

Definition 7 (Monotonic convergence). System (28) converges monotonically in the 𝓁2 norm from 𝑓
𝑗

to 𝑓
∞

with 0 ≤ 𝛾 < 1,
if and only if

‖

‖

‖

‖

𝑓
∞
− 𝑓

𝑗+1

‖

‖

‖

‖𝓁2

≤ 𝛾
‖

‖

‖

‖

𝑓
∞
− 𝑓

𝑗

‖

‖

‖

‖𝓁2

∀𝑗. (31)

A monotonic convergence condition of (27) and (28) is provided as follows.

Theorem 3 (Monotonic convergence condition). Iterations (27) and (28) converge monotonically in the 𝓁2 norm if and only if

𝛾 ∶= ‖𝑄𝑠(𝐼 − 𝐿𝑠𝐽𝑥)‖∞
< 1 (32)

Note that (32) is equivallent to

𝜎̄
(

𝑄𝑠
(

𝑒𝑗𝜔
) (

𝐼 − 𝐿𝑠
(

𝑒𝑗𝜔
)

𝐽𝑥
(

𝑒𝑗𝜔
)))

< 1 ∀𝜔 ∈ [0, 𝜋], (33)

where 𝜎̄ denotes the maximum singular value.

A proof follows from [ 20, Theorem 2].
From (27) and (28), the asymptotic signals 𝑒𝑥̂,∞ and 𝑓

∞
are obtained as

𝑑𝑒𝑥̂,∞ = lim
𝑗→∞

𝑑𝑒𝑥̂,𝑗 =
(

𝐼 − 𝐽𝑥(𝐼 −𝑄𝑠(𝐼 − 𝐿𝑠𝐽𝑥))−1𝑄𝑠𝐿𝑠
)

𝑆𝑥𝑟𝑥

𝑓
∞
= lim

𝑗→∞
𝑓
𝑗
= (𝐼 −𝑄𝑠(𝐼 − 𝐿𝑠𝐽𝑥))−1𝑄𝑠𝐿𝑠𝑆𝑥𝑟𝑥.

(34)

The requirement for 𝑄𝑠 to achieve the zero-asymptotic estimated state tracking error is is as follows:

Theorem 4 (Requirement in 𝑄𝑠 for 𝑒𝑥̂,∞ = 0). Assume 𝐿𝑠(𝑒𝑖𝜔), 𝐽𝑥(𝑒𝑖𝜔) ≠ 0,∀𝜔. Given that (30) holds, then for all 𝑟𝑥 ∈
𝓁2, 𝑒𝑥̂,∞ = 0, if and only if 𝑄𝑠 = 𝐼𝑛.

For a proof, see [ 21, Theorem 3].

To conclude, this section presents the state-tracking ILC framework and its convergence condition.
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4 DESIGN OF STATE-TRACKING ILC

This section presents design procedures of the robustness 𝑄𝑠 filter and a learning filter 𝐿𝑠 by using non-parametric frequency
response data. In addition, a method of using a non-parametric model for analysis is introduced to reduce the user’s modeling
effort. This section constitutes contribution C3.

4.1 Robustness 𝑄𝑠 filter design for monotonic convergence
When the monotonic convergence condition shown in (33) is not satisfied by 𝑄𝑠 = 𝐼𝑛, it is necessary to design a 𝑄𝑠 filter, which
is a MIMO filter. In this section, two designs of 𝑄𝑠 filters that guarantee monotonic convergence are presented: the first method
is an intuitive design, but it exhibits conservative performance, whereas the second is a trial-and-error design that may exhibit
high performance.

4.1.1 Intuitive design
An intuitive design of 𝑄𝑠 is a direct design in the 𝑛-sample lifted domain, that is, the sampling time 𝑛𝑇𝑠. Let 𝑞𝑠1 ∈ ∞ and

𝑄𝑠1 = 𝑞𝑠1𝐼𝑛 ∈ 𝑛×𝑛
∞ . (35)

The advantage of this design is that the convergence condition (33) is simplified to

𝜎̄
(

𝑄𝑠1
(

𝑒𝑗𝜔
) (

𝐼𝑛 − 𝐿𝑠
(

𝑒𝑗𝜔
)

𝐽𝑥
(

𝑒𝑗𝜔
)))

= 𝜎̄
(

𝑞𝑠1
(

𝑒𝑗𝜔
))

𝜎̄
((

𝐼𝑛 − 𝐿𝑠
(

𝑒𝑗𝜔
)

𝐽𝑥
(

𝑒𝑗𝜔
)))

< 1 ∀𝜔 ∈ [0, 𝜋]. (36)

Consequently, this allows the user to intuitively design 𝑄𝑠1 using the Bode plot, as in the case of the SISO output-tracking ILC22.
However, it fails to exploit the directions in multivariable systems, which results in a conservative design.

4.1.2 Less conservative design
Another 𝑄𝑠 design method involves designing a SISO filter in the original sampling time, that is, 𝑇𝑠, followed by the application
of lifting. Let 𝑞𝑠2 ∈ ∞ and

𝑄𝑠2 = 𝑞𝑠2−1. (37)

In general, the directions can be effectively utilized, and a less conservative design may be created, as shown in (38).

𝜎̄
(

𝑄𝑠2
(

𝑒𝑗𝜔
) (

𝐼𝑛 − 𝐿𝑠
(

𝑒𝑗𝜔
)

𝐽𝑥
(

𝑒𝑗𝜔
)))

≤ 𝜎̄
(

𝑄𝑠2
(

𝑒𝑗𝜔
))

𝜎̄
((

𝐼𝑛 − 𝐿𝑠
(

𝑒𝑗𝜔
)

𝐽𝑥
(

𝑒𝑗𝜔
)))

(38)

Equations (36) and (38) indicate that 𝑄𝑠2 can have a higher bandwidth than 𝑄𝑠1, leading to higher state-tracking performance
according to (34).

4.2 Guideline for the learning filter 𝐿𝑠 design
This section presents a design guideline for learning filter 𝐿𝑠 to realize fast convergence. Equation (27) motivates designing 𝐿𝑠
as an inverse system of 𝐽𝑥. However, as 𝐽𝑥 has no direct feedthrough according to Assumption 1, the inverse system of 𝐽𝑥 is not
feasible, and thus, a preview is required to achieve inversion. Theorem 5 proves that one sample preview in the lifted domain is
necessary and sufficient to have direct feedthrough.

Theorem 5 (Direct feedthrough of 𝑧𝐽𝑥). 𝐽𝑥 is given as

𝐽𝑥 ∶= 𝑧𝐽𝑥 = 𝑧𝐺𝑜𝑆, (39)

where

𝐽𝑥 ∶
𝑧
=
[

𝐴𝐽𝑥 𝐵𝐽𝑥
𝐶𝐽𝑥 𝑂𝑛×𝑛

]

, hence 𝑧𝐽𝑥
𝑧
=
[

𝐴𝐽𝑥 𝐵𝐽𝑥
𝐶𝐽𝑥𝐴𝐽𝑥 𝐶𝐽𝑥𝐵𝐽𝑥

]

, (40)

with full rank 𝐶𝐽𝑥𝐵𝐽𝑥 .



WATARU OHNISHI, NARD STRIJBOSCH, AND TOM OOMEN 11

Proof. 𝐶𝐺 = 𝐼𝑛 is assumed by an ideal observer without loss of generality. 𝐺 is obtained by 𝑛 sample lifting of 𝐺 and formulated
as

𝐺
𝑧
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑛
𝐺 𝐴𝑛−1

𝐺 𝐵𝐺 𝐴𝑛−2
𝐺 𝐵𝐺 ⋯ 𝐵𝐺

𝐼 0 0 ⋯ 0
𝐴𝐺 𝐵𝐺 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝐴𝑛−1
𝐺 𝐴𝑛−2

𝐺 𝐵𝐺 𝐴𝑛−3
𝐺 𝐵𝐺 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (41)

Next, the state selection matrix  selects the first-time instance, and thus 𝐺 is obtained as

𝐺
𝑧
=
[

𝐴𝑛
𝐺 𝐴𝑛−1

𝐺 𝐵𝐺 𝐴𝑛−2
𝐺 𝐵𝐺 ⋯ 𝐵𝐺

𝐼 0 0 ⋯ 0

]

. (42)

Hence, with 1 sample preview, 𝑧𝐺 can be obtained as

𝑧𝐺
𝑧
=
[

𝐴𝑛
𝐺 𝐴𝑛−1

𝐺 𝐵𝐺 𝐴𝑛−2
𝐺 𝐵𝐺 ⋯ 𝐵𝐺

𝐴𝑛
𝐺 𝐴𝑛−1

𝐺 𝐵𝐺 𝐴𝑛−2
𝐺 𝐵𝐺 ⋯ 𝐵𝐺

]

, (43)

where [𝐴𝑛
𝐺 𝐴𝑛−1

𝐺 𝐵𝐺 𝐴𝑛−2
𝐺 𝐵𝐺 ⋯ 𝐵𝐺] is full rank based on the controllable assumption in Assumption 1. Further, the

sensitivity function 𝑆 and its lifted system are defined as follows:

𝑆 ∶
𝑧
=
[

𝐴𝑆 𝐵𝑆
𝐶𝑆 𝐷𝑆

]

, and 𝑆 ∶
𝑧
=
[

𝐴𝑆 𝐵𝑆
𝐶𝑆 𝐷𝑆

]

, (44)

where 𝐷𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐷𝑆 0 ⋯ 0
𝐶𝑆𝐵𝑆 𝐷𝑆 ⋯ 0
⋮ ⋮ ⋮

𝐶𝑆𝐴𝑛−2
𝑆 𝐵𝑆 𝐶𝑆𝐴𝑛−3

𝑆 𝐵𝑆 ⋯ 𝐷𝑆

⎤

⎥

⎥

⎥

⎥

⎦

, (45)

where 𝐷𝑆 is full rank as 𝐷𝑆 ≠ 0 because 𝑆 represents a bi-proper system.
Moreover, considering the Sylvester’s rank inequality, 𝐶𝐽𝑥𝐵𝐽𝑥 = [𝐴𝑛

𝐺 𝐴𝑛−1
𝐺 𝐵𝐺 𝐴𝑛−2

𝐺 𝐵𝐺 ⋯ 𝐵𝐺]𝐷𝑆 is determined to
be full rank.

After completing the design 𝑧𝐽𝑥 with direct feedthrough, the learning filter 𝐿𝑠 is designed as 𝐿𝑠 = 𝑧(𝑧𝐽𝑥)−1. In the case 𝑧𝐽𝑥
is a non-minimum phase system, stable inversion11 can be exploited to obtain bounded signals.

4.3 Limited design effort for user
State tracking ILC analyzes the LPTV system as explained in Section 3; however, the procedure presented in this section allows
the measured frequency response data to be employed in the procedure, thereby reducing the effort required to design on part
of the user. This is a key step that constitutes Contribution C3. Lifting the measured frequency response data, when combined
with the analysis shown in Contribution C2, enables the design of robustness filters to be as intuitive as output-tracking ILC in
frequency domain design.

The lifted frequency response data are obtained using Lemma 5.

Lemma 5 (Lifted system in frequency response function). The lifted frequency response function matrix over 𝑛 sample 𝑃 (𝑧) ∈
ℂ𝑛×𝑛 is obtained as

𝑃 (𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 (0)(𝑧) 𝑧−1𝑃 (𝑛−1)(𝑧) 𝑧−1𝑃 (𝑛−2)(𝑧) ⋯ 𝑧−1𝑃 (1)(𝑧)
𝑃 (1)(𝑧) 𝑃 (0)(𝑧) 𝑧−1𝑃 (𝑛−1)(𝑧) ⋯ 𝑧−1𝑃 (2)(𝑧)
𝑃 (2)(𝑧) 𝑃 (1)(𝑧) 𝑃 (0)(𝑧) ⋯ 𝑧−1𝑃 (3)(𝑧)

⋮ ⋮ ⋮ ⋱ ⋮
𝑃 (𝑛−1)(𝑧) 𝑃 (𝑛−2)(𝑧) 𝑃 (𝑛−3)(𝑧) ⋯ 𝑃 (0)(𝑧)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

where

𝑃 (𝜎) (𝑧𝑛) = 𝑧𝜎

𝑇

𝑇−1
∑

𝑘=0
𝑃
(

𝑧𝜙𝑘)𝜙𝑘𝜎 , 𝜙 = 𝑒
2𝜋𝑗
𝑛 , (47)

for 0 ≤ 𝜎 ≤ 𝑛 − 1 and 𝜎 ∈ ℤ≥0.
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Algorithm 1 State-tracking ILC design
a) Identify the frequency response data of 𝐺FRF and obtain a parametric model 𝐺 via system identification.
b) Design a stabilizing feedback controller 𝐾 and state observer 𝑂 using 𝐺.
c) Compute the parametric model 𝐺𝑜𝑆 and lift 𝐺𝑜𝑆 using (2).
d) Compute the frequency response data (𝐺𝑜𝑆)FRF using 𝐺FRF and apply lifting by (46).
e) Compute 𝐽𝑥 using (20) and design the learning filter by 𝐿𝑠 = 𝑧(𝑧𝐽𝑥)−1.
f) Check the convergence condition using (30) with 𝑄𝑠 = 𝐼𝑛. If the convergence condition is not satisfied, satisfy (30) according
to Section 4.1 by updating the model 𝐺 or designing the robustness 𝑄𝑠 filter.

Inertia
Motor

FIGURE 7 Motion setup: a single inertia
system.
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FIGURE 8 Motion reference 𝑟(𝑡) for the single iteration with a length
of 800 ms.

For a proof, see [ 23, Section 6.2.1].
In contrast to the lifting for a parametric model formulated in (3), Lemma 5 enables to compute a frequency response matrix

of 𝐽𝑥 defined by (20) using the measured frequency response data. Thus, the convergence condition (30) can be determined by
the non-parametric frequency response data, with 𝐽𝑥 calculated by (20) and the learning filter 𝐿𝑠 calculated by (3).

The design procedure is summarized as Algorithm 1.

5 EXPERIMENTAL VALIDATION

ILC experiments are conducted using the experimental setup shown in Fig. 7 for the angle reference shown in Fig. 8. The
measured frequency response data and a model from input current reference to measured angle are shown in Fig. 9. In this paper,
the third order is chosen, whereas the choice of the order of the plant model is a design parameter for the user. Higher-order
models with higher accuracy reduce the gain of the convergence condition in (33), allowing for a higher frequency bandwidth for
the robustness filter. This achieves state tracking for higher-order states at the expense of lengthening the state tracking interval.
This section constitutes Contribution C4.

The sampling time for the controller is set as 𝑇𝑠 = 6ms, and intersample data are obtained by every 0.5ms. This indicates that
the output-tracking ILC aims to track outputs every 6 ms, and the state-tracking ILC aims to track states every 18 ms. Learning
gain 𝛼 is exploited to mitigate the amplification of the trial-varying disturbance20 by replacing (7) and (14) as

𝑓𝑗+1 = 𝑄𝑜(𝑓𝑗 + 𝛼𝐿𝑜𝑒𝑗) and (48)
𝑓
𝑗+1

= 𝑄𝑠(𝑓 𝑗
+ 𝛼𝐿𝑠𝑒𝑥̂,𝑗), (49)

respectively. The learning gain 𝛼 is set to 0.3 in the following experiment. This value of 0.3 is set to accommodate quantization
noise, which is trial-varying disturbances, in order to achieve tracking performance close to that of encoder quantization.

The experiments are conducted using two examples: one wherein the system is accurately identified such that monotonic
convergence can be guaranteed with 𝑄𝑠 = 𝐼𝑛, and another wherein the 𝑄𝑠 filter has to be designed. A feedback controller that
guarantees the stability of the closed-loop system is designed. In the following experiments, a Proportional-Differential (PD)
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FIGURE 9 Frequency response data ( ), well-identified con-
tinuous time model ( ) and discrete time model ( ). Due to
the accurate model, the monotonic convergence condition is
satisfied without the design of the Q-filter, as shown in Fig. 10.
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(a) Output tracking ILC.
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(b) State tracking ILC.

FIGURE 10 Convergence conditions calculated by (9) and
(33), using the accurate model shown in Fig. 9. Since the gain
is less than 0 dB in all frequencies, both satisfy the monotonic
convergence condition.

controller with the gain crossover frequency 5.6 Hz, 30.1 degrees phase margin, and 8.69 dB gain margin is used. The observer
is designed using the third-order plant model with a Butterworth-type pole placement with 40 Hz bandwidth. The bandwidth of
the observer is a design parameter determined by the accuracy of the model and the amount of measurement noise.

The following experimental results conclude that the presented state-tracking ILC outperforms the standard output-tracking
ILC.

5.1 Case 1: Performance with accurately identified model
This section compares the experimental results of the output and state tracking ILCs using the accurately identified model shown
in Fig. 9. Further, the differences in the characteristics of output and state tracking are clarified. Fig. 10 shows that the monotonic
convergence condition is satisfied for both the output-tracking ILC and the state-tracking ILC without designing the robustness
filter, i.e., 𝑄𝑜 = 1, 𝑄𝑠 = 𝐼𝑛. It follows that, by (10) and Theorem 4, perfect tracking and perfect state tracking can be achieved
under the condition of no trial-varying disturbances, respectively.

Fig. 11 shows the norm comparison of the two methods and further demonstrates that the presented state-tracking ILC exhibits
better performance compared to the output-tracking ILC. Fig. 12 shows the tracking error comparison at the best iterations.
Although the output-tracking ILC shown in Fig. 12(a) yields a small on-sample error, a large intersample tracking error is
observed. The intersample behavior is excited at the timing of the change in acceleration of the reference trajectory shown in
Fig. 8. Since 𝐿𝑜 = (𝑆𝐺)−1 has an unstable pole due to discretization, stable inversion is applied, and thus the waveform of the
intersample error propagates backward in time. In contrast, the state-tracking ILC shown in Fig. 12(b) yields a small intersample
tracking error. Although intersample error occur at the timing of acceleration changes, unlike the output-tracking ILC, the errors
are not propagated. In particular, a small tracking error at every 𝑛 = 3 sample is observed because the state-tracking ILC aims
to realize perfect state tracking at every 𝑛 sampling instance.
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FIGURE 11 Experimental results with well-identified model. State tracking ILC ( ) outperforms output tracking ILC ( ).
Comparing the best trials, the state-tracking ILC had 12 times better tracking performance.
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(a) Output tracking ILC at iteration 29.
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(b) State tracking ILC at iteration 32.

FIGURE 12 Tracking error comparison of the best iteration. The presented state-tracking ILC outperforms the output-tracking
ILC in intersample behavior ( ). The output-tracking ILC achieves a small tracking error at every 𝑇𝑠 ( ) at the cost of oscillating
intersample behavior. The state-tracking ILC achieves a small tracking error at every 𝑛𝑇𝑠 ( ), and the oscillating intersample
behavior is not observed. It is achieved by the concept of the state-tracking of the presented ILC.



WATARU OHNISHI, NARD STRIJBOSCH, AND TOM OOMEN 15

100 101 102
−60
−40
−20

0
20
40
60
80

M
ag

ni
tu

de
[d

B
]

100 101 102
−360

−270

−180

−90

0

Frequency [Hz]

Ph
as

e
[d

eg
]

FIGURE 13 Frequency response data ( ), inaccurately identified continuous time model ( ), and discrete time model ( ).
The offset in gain brings about the need for the 𝑄𝑠 filter shown in Fig. 14.

5.2 Case 2: Performance with inaccurately identified model
This section presents an experimental comparison of output and state tracking ILCs using the inaccurately identified model
shown in Fig. 13. Further, the difference in results owing to the robustness filter design method has been clarified.

Fig. 14 indicates that in the absence of robustness filters the convergence condition is not satisfied. Therefore, to satisfy the
monotonic convergence condition, robustness filters with the maximum bandwidth are designed for the three conditions of
output and state tracking ILCs. Compared to the intuitive design 𝑄𝑠1, the less conservative design 𝑄𝑠2 effectively utilizes the
directions in multivariable system and thus satisfies the convergence condition with higher bandwidth robustness filter.

Fig. 15 shows the norm comparison of the three methods, demonstrating that the presented state tracking ILC with less-
conservative robustness filter design exhibits better performance compared to the output-tracking ILC. However, owing to the
robustness filter with lower bandwidths, the intuitive design method resulted in larger tracking errors than the others. This is
because the robustness filter in intuitive design is designed directly in the lifted domain with a low sampling period.

Fig. 16 shows the tracking error comparison at the best iterations. The output-tracking ILC in Fig. 16(a) demonstrates a
behavior similar to the 𝑄𝑜 = 1 condition shown in Section 5.1. Although the error on-sample is small, a large intersample
tracking error is observed. Further, owing to the robustness filter with lower bandwidths, the intuitive design shown in Fig. 16(b)
yields a large tracking error. In addition, the less conservative robustness filter design in state-tracking ILC, shown in Fig. 16(c),
exhibits better performance than other design methods, including both on-sample and intersample tracking errors.

6 CONCLUSION

The developed ILC framework enables the improvement in intersample behavior by incorporating the idea of state-tracking in
design. Based on an LPTV stability analysis, convergence conditions are derived that guarantee convergence and monotonic
convergence. The accurate and inexpensive non-parametric frequency response data can be exploited to verify the convergence
conditions. Additionally, the design of a robustness filter that guarantees monotonic convergence conditions even with inaccurate
models is presented, demonstrating the effectiveness of the proposed method in practical conditions. Application of the design
framework to a motion system and the experimental validation demonstrate the superior tracking performance and improved
intersample behaviour over the traditional output-tracking ILC.

Ongoing research focuses on an integrated optimization of observer design and robustness filters. Future research focuses on
applications to higher-order systems, including MIMO systems.
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(a) Output tracking ILC. Whereas 1−GSLo ( ) does not satisfy the mono-
tonic convergence condition, Qo(1−GSLo) ( ) does with the inclusion of
Qo ( ).
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(b) State tracking ILC, intuitive design (Qs1). Whereas σ̄(I − LsJx)
( ) does not satisfy the monotonic convergence condition, σ̄(Qs1(I −
LsJx)) ( ) does with the inclusion of σ̄(Qs1) ( ). Since
σ̄(Qs1(I − LsJx)) is equal to σ̄(Qs1)σ̄(I − LsJx)) ( ), it allows
for intuitive Q-filter design.
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(c) State tracking ILC, less conservative design (Qs2). Whereas σ̄(I −
LsJx) ( ) does not satisfy the monotonic convergence condition,
( ) does with the inclusion of Qs2 ( ). By using directions in
multivariable system, Qs2 can have a higher bandwidth than Qs1, which
leads to a higher tracking performance.

FIGURE 14 Convergence conditions with inaccurately identified model calculated by (9) and (33). The comparison between
(b) and (c) shows that there is a trade-off between intuitive design and high bandwidth in state-tracking ILC.
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FIGURE 15 Experimental results with inaccurately identified model. State tracking ILC with less conservative 𝑄𝑠2 ( )
outperforms output tracking ILC ( ) and state tracking ILC with intuitive design 𝑄𝑠1 ( ). In the comparison of the best
trials, the state-tracking ILC with less conservative 𝑄𝑠2 has 1.8 times better tracking performance than the output tracking ILC.
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(a) Output tracking ILC at iteration 36 with 𝑄𝑜.
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(b) State tracking ILC at iteration 24 with intuitively designed 𝑄𝑠1.
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(c) State tracking ILC at iteration 39 with less conservative 𝑄𝑠2.

FIGURE 16 Tracking error comparison of the best iteration. The presented state-tracking ILC with less conservative 𝑄𝑠2 filter
design outperforms the output-tracking ILC in intersample behavior ( ). The tracking error for each sampling period 𝑇𝑠 is
shown by ( ), and the tracking error for each 3𝑇𝑠 is shown by ( ). The intuitive 𝑄𝑠1 design resulted in low tracking performance
due to the low bandwidth of the robustness filter. The trend in (a) and (c) is the same as in Fig. 12: oscillatory intersample
behavior is observed for the output-tracking ILC, while the state-tracking ILC with less-conservative design shows an improved
tracking performance.
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