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Chapter 1

Introduction

1.1 Back ground of high-precision motion control

High-precision motion control has an important role in the industry. Because motion accuracy and
throughput are crucial factor for product quality and price, faster and more precise positioning are
continuously required. It has a key role in, for instance, wafer scanner [1-3], flat panel display (FPD)
scanner [4,5], hard disk drives (HDD) [6], optical drive [7,8], atomic force microscope (AFM) [9,10],
printing system [11,12], machine tools [13,14], galvano scanner [15], satellite [16], industrial robot [17],
packaging machinery [18].

Literature [19] [20] mentions the design phases of motion control are:

1. design of reference trajectory;

2. design of controller to track the reference trajectory;

3. design of transient or settling controller to minimize the tracking error caused by various un-
modeled dynamics or unpredicted plant fluctuations; and

4. design of controller to suppress external disturbances to ensure the controlled object remains

on the target position.

To achieve a high-performance in all four phases, two-degrees of freedom control design, which consists
of feedforward and feedback controllers, is important.

In phase 1, polynomial trajectories (including SMART trajectory [21]), Bézier curves, B-spline curves
are widely used [22] for reference trajectory generation. Phase 1 also includes input shaping [23-25] to
reduce plant vibration excited by the original reference signal, and reference governor [26-29], which
is taking into account of constraints.

In phase 2, model-based or data-based feedforward controllers are used. The key of model-based

feedforward controller is the inversion of a plant model [30] (see Part I for detail). Model-based
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feedforward control also includes finite-state control (FSC) [31]. FSC and its extension methods are
applied to HDD [32,33], galvano scanner [15], and scanning stage [34,35].

Phase 3 and 4 include feedback control design from classical control to modern control and further,
with long history (see i.e. [20,36-38]). Mechanical resonances, delays, unstable zeros (non-collocated
system), model uncertainty limit the feedback control bandwidth. For mechanical resonances, notch
filters and phase stabilization techniques [39,40] are widely applied. Variable gain approach [2,41],
which is one of nonlinear control approach, is proposed to overcome the limitations of linear control
scheme [36]. To deal with uncertainty of the plant and design less-conservative robust controller,
connecting system identification and robust control approach is proposed [42].

One of the recent trends is utilizing additional sensors and actuators compared to rigid-body design
approach (the numbers of sensors and actuators are same as motion degrees of freedom). Additionally,
the high-resolution encoder becomes cheaper [17]. Hence, vibration suppression control methods for
two-mass system using multiple encoders [43] and high-resolution encoder [44] are proposed. Active
damping using additional actuators is proposed [45,46]. Compared to the traditional notch filters,
active damping leads to a faster decay of the vibration modes.

To minimize the cost and effort of mechanical design and controller to maximize the performance,
integrated design of mechanism and control approaches are proposed [47-51]. Mechanical systems
are designed to be minimum phase and have less delay as much as possible to have better feed-
back/feedforward performance. This is, in other words, constraints for a design of a system. The
motivation of this thesis is to relax the constraints by control algorithms and to present new options

for system design.

1.2 Effect of nonminimum phase systems
1.2.1 Definition of nonminimum phase systems

Systems with no unstable zeros or time delays are called “minimum phase systems”. Minimum phase
systems have a unique relationship between the gain and phase of the frequency response, called the
phase formula [36]. In other words, the minimum phase systems have the minimum possible phase lag
for the given magnitude response.

On the other hand, systems with unstable zeros and/or time delays are called “nonminimum phase
systems”. Compared to the minimum phase systems, nonminimum phase systems have an additional
phase lag with the same gain. For each nonminimum phase system G, (s), there exist and all-pass

system Gyp(s) and a minimum phase system Gy, (s) such that Guump(s) = Gap(s)Gmp(s) [36]. An
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Figure 1.1 Reduced phase margin of the nonminimum phase systems. Ly, = ﬁ
example of an all-pass system with unstable zero is

—Ss+a
s+ a

Gapl(s) = s (11)

where a > 0. |Ggp1(s)| =1 for all frequency, but ZGgp1(s) = —2arctan(w/a) [rad]. Similar thing can

be said for the time delay.

Gapa(s) =€ 77, (1.2)

where 7 denotes the delay time [s]. |Ggp2(s)| = 1 for all frequency, but ZG,p2(s) = —w7 [rad]. These
all-pass filters with unstable zeros or time delays contribute the additional phase lag compared to the

minimum phase systems and reduce the phase margin (Fig. 1.1).

1.2.2 Limitations of system with unstable zeros

The zeros of the continuous-time system are determined by the matrices A, b, c in the state space
representation of the plant. In other words, besides the dynamics of the plant, the arrangement of the
sensors and the actuators also have a role in determining the zeros [52]. It is known that, for instance,
the wafer stage of a semiconductor exposure apparatus [1], a hard disk drive (HDD) [53], a boost
converter [54] have unstable zeros in continuous-time domain as shown in Fig. 1.2. In these cases, the
unstable intrinsic zeros are generated by discretization. On the other hand, even when there is no
unstable zero in the continuous time transfer function, the discretization zero is unstable when the
relative degree is greater than two [55]. It is also clear from the Euler-Frobenius polynomials with a
short-sampling time assumption [56-58]| listed in Tab. 1.1. Therefore, the inverse system of the plant
becomes unstable and perfect tracking control (PTC) cannot be achieved with the single-rate system

framework [59].
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Table 1.1 Zeros of Euler-Frobenius polynomial [58].

Relative order Zeros

2 -1

3 —2—+/3,1/(-2—/3)

4 —5—2v6, -1, 1/(—5 — 2V/6)

Fine stage
Linear motor for

2
the coarse stage
T
" - Yy

Relative position

sensor P
Relative position
sensor

Linear motor for

the coarse stage _— Coarse stage
(a) High-precision positioning (b) Hard disk drives. (c) Motors and converters.
stages.

(d) Robots. (e) Cars (backward driving [60]). (f) Aircraft (elevator deflection

to pitch angle) [61].
Figure 1.2 System with unstable zeros (Photographs are from [62]).

To balance the robustness and the response speed, it is advised to have the gain margin is grater
than 2 and the phase margin is grater than 30° [38]. When we have an unstable zero at s = a (a > 0),
the acceptable control performance in the sense of integral square error (ISE) optimal is limited to
we < a/2, approximately [38,63]. w. denotes the gain cross over frequency [rad/s|. The effect of
unstable zeros for the sensitivity function is known as the second waterbed formula [64,65].

Additionally, systems with unstable zeros gives rise to an initial undershoot when stepped (Fig.
1.3) [52,66]. It is known that the number of the zero-crossings [67,68] is same as the number of real
unstable zeros. It is undesired phenomena for the reference tracking problem. Feedforward controller
for reference tracking is commonly designed by the feedforward plant-injection (FFPI) or feedforward

closed-loop-injection (FFCLI) architectures [69]. In both cases, the inversion system has unstable poles
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and it is infeasible to implement. Therefore, approximate model-inverse methods are proposed (see
Section 2.3.1). With the approximate model-inverse methods, the undershoot is inevitable because
the unstable zeros remain the frequency responses from the reference r to the output y.

It is known that with preview*! and preactuation*?, the tracking performance is improved [70—
72]. Continuous-time approach [70,71], ignoring the effect of zero-order hold, perfect tracking is not
possible for digital control system (it is discussed in Section 2.6.6 and Fig. 2.22). Direct inversion for
discrete time model, which compensate the discretization and intrinsic zeros at same time, brings high

oscillations [73,74].

1.2.3 Practical background of system with unstable zeros: high-precision positioning

stages

High-precision scan stages play an important role in the manufacturing processes for semiconductors
and liquid crystal displays [42,75]. In these applications, high-precision stages have to control six
degrees of freedom (DOFs: z,y, z,0;,6,, and 6,) [76]. To reduce disturbances such as floor vibrations,
contactless actuators (e.g. linear motors [1,77] and voice coil motors [78]) and contactless gravity
compensation (e.g. air bearings [79] and magnetic levitation [80-82]) are commonly used.

Since the rotation degrees of freedom are not mechanically constrained, coupling between the trans-

lational motion and rotational motion is not negligible. For instance, as shown in Fig. 1.4, the height

*1 preknowledge of the future trajectory.
*2 applying the control input before the command value changes.



6 Chapter 1. Introduction

3 2 (measured)

A< ;
1
20 e Table s
Stage Linear encoder m |
Linear motor @ fz
Carriage
Y Air guide i
O yl Linear encoder ‘ ~
Figure 1.4 Stage z motion (a) High-precision position- (b) Model of (a).
ing stage.

with coupling from 6 direc-

tion Figure 1.5 Experimental high-precision position-

ing stage and its model [83,84].

of z; (point of interest) is
21 = 20 + 10, (1.3)

where zg, y1, and 0 denote the height of the center of rotation of the stage, the position of the stage in
y axis, and the pitching angle, respectively. Small pitching angle is assumed. Transfer function from
z direction force f, to zj is

z1(s)  zo(s) 0(s)

L) Rl UG

(1.4)

21(5)

f2(s)

Another example with unstable zeros is gantry stages shown in Fig. 1.5. The gantry stage structure

Since y; can be positive or negative sign, the zeros of become unstable in some position [1].

is commonly used in X-Y large scale high-precision positioning stages [43,85]. The zeros of the transfer

function is a function of the height of the measurement point L,, [83], e.g.

z(s)

— 3.048 x 1010 (0.1228 — L,,)s* + 0.4102s + 3476
fs) 5(s 4+ 10000) (s + 1.846)(s2 + 5.623s + 4.078 x 10%)

(1.5)

Depending on the mechanical design such as the height of the actuation point, measurement point, and
the center of mass, the system can have unstable zeros. Hence, integrated design of mechanism and
control approaches are proposed [47-50] to locate the zeros for the desired position from the viewpoint
of control engineering. This is, in other words, a constraint for a mechanical design. The approaches
proposed in Chapter 2-6 relax the constraints for mechanical design by improving the feedforward

control performance utilizing preactuation and multirate feedforward control scheme.
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Table 1.2 Plate size of the flat panel display manufacturing system.

Generation 4 6 8 10 10.5
Year 2000 2003 2005 2009 2018
Plate size [mm] 700 x 900 1500 x 1850 2200 x 2550 2880 x 3130 2940 x 3370
Ratio 1 4.4 8.9 14.3 15.7

1.2.4 Limitations of system with time delay

Systems with time delay are, for instance, chemical processes [86,87], teleoperated systems [88],

and pneumatic actuators [89]. As mentioned in Section 1.2.2, it is advised to have the gain margin is

grater than 2 and the phase margin is grater than 3

0° [38]. When we have a time delay of 7 (7 > 0),

the acceptable control performance in the sense of ISE optimal is limited to w. < 1/7, approximately.

Comparing the acceptable control performance mentioned in Section 1.2.2, the time delay 7 has similar

effect of unstable zero at 2/a. It is clear from 1st order Padé approximation

1—
1+

Is
2

Ts
2

e TS

9

which has a zero at s = % General Padé approximation is given by [90]

—rs ., Po +pis+---+prs”

gt qs+ -+ qusM

_ MNL+ M — i) ;

= o= w7

(1)L + M —1)!
(L —d)la!

e

(_T)i7

P =

where M and L denotes the order of approximations

Laguerre approximation

()

and Kauz approximation

TS

2L
Ts
L+ 37

e—TS

~

1_ 18 4 1287 L
e~ TS ~ 2L 8L2
- TS 7252 :
L+ 397 + 512

(1.7)

(1.8)

(1.9)

. Other approximation methods are, for instance,

(1.10)

(1.11)

The key issue is that time delays cannot be inverted in the causal framework.
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1.2.5 Practical background of system with unstable zeros: pneumatic actuators for large-

scale stages

There is a strong requirement for improving productivity for integral circuits [1] and flat panel
displays [4,91]. To improve the productivity, the size of the stage becomes larger [92-94], and the
scanning speed and acceleration [1] are increased.

The required maximum force of the actuator f,,.. is about
fmam = MAamazx, (112)

where m and a,,., denote the mass of the stage and the maximum acceleration of the reference
trajectory. Considering that m becomes bigger by a larger stage and a4, becomes bigger by a higher
acceleration profile, the required maximum force of the actuator f,.. becomes bigger and bigger.
This is one of the bottlenecks of the productivity improvement. The plate size of the flat panel display
is listed in Tab. 1.2. It is clearly said that the plate size is reaching the ceiling.

To address the issue, a catapult stage structure, which allows both contact and separation between
the fine and coarse stages, is proposed [34,95,96]. The fine stage of the catapult stage is lighter
and simpler compared to the conventional dual-stage because the fine stage actuation is not nec-
essary for the acceleration and deceleration regions in the scanning motion. This thesis considers
replacing the linear motor in the coarse stage with a pneumatic actuator for a lighter and simpler
stage. This pneumatically-actuated coarse stage can be used in the catapult configuration to create
a new-generation lightweight dual stage that generates little heat and demonstrates high positioning
accuracy.

A pneumatic actuator has advantages compared to a linear motor: 1) low heat generation [97], 2)
high power-weight ratio [98], and 3) low cost [98]. Disadvantages include 1) time delay [99] and 2)
nonlinear dynamics [100,101] due to air dynamics and servo valves. Because of these disadvantages,
pneumatic actuators are not commonly used in precision motion control applications [102]. This thesis

address the problem of input delay and position dependent resonances shown in Fig. 1.6.

1.3 Review on multirate feedforward control

This section briefly reviews the multirate feedforward control. Details and notations are in Chapter
2. To address the unstable discretization zeros problem, a multirate feedforward control [103] (see
Fig. 1.8) has been proposed to design stable inverse for unstable discretization zero(s) [55], which is

generated by a zero-order-hold. This method generates a feedforward control input, which enables
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(a) Pneumatically actuated stage (see Fig. 8.1).
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(b) Input delay (see Fig. 7.5). (c) Position dependent resonances. (see Fig. 8.5(a)).

Figure 1.6 Challenges for high-precision motion control by pneumatic actuator.

the system to track perfectly with the desired state trajectory. The effectiveness is verified by using
a dc servo motor. This method is related to the minimum-time dead-beat control [37] and the idea
has a connection to the finite-state control [31,32]. Secondly, this method is extended to systems with
vibrations [53,85] (see Fig. 1.9), in other words with stable zeros in continuous-time domain. This
method is named as vibration suppression perfect tracking control (VSPTC). Ishihata et al. have
proposed a discrete-time domain design method for the multirate feedforward control. Thirdly, the
multirate feedforward control is extended to have a robustness by adaptive control [104] (see Fig. 1.10)
or repetitive control scheme [105] (see Fig. 1.11). Multirate feedforward and its extension is applied
to, for example, HDDs [53], large-scale high-precision stages [85,106], atomic force microscopes [107],
machine tools [13], optical drives [108], and robots [109].

However, when the plant has unstable zeros in continuous time domain, the desired state trajectory
diverges. Chapter 2 extends the desired state trajectory generation method to apply systems with
unstable zeros in the continuous-time domain (preactuation perfect tracking control: PPTC), which

is a stable inversion method for unstable intrinsic and discretization zeros without approximation.
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Figure 1.7 Simplified block diagram of the multirate feedforward (only feedforward path is
shown). S, H, and L denote a sampler, holder, and lifting operator [110], respectively. z and
zs denote e*T" and e*Tv, where T, = nT, = nTy, respectively. Simply speaking, the block
of the multirate feedforward is an inverse of the state equation of the plant and the block of
the state trajectory generation is an inverse of the output equation. Additionally, due to the
controllable canonical form realization, the continuous-time unstable zeros appear only in the

output equation.

Multirate feedforward

rli +1] {stable inversion for unstable discretization zeros)
= agli+1] | i) wolk] ulk] [ Jut) o y(t)
HB™HI - 2"1A) L71H (T.) P.(s) [+
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fulee )
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Figure 1.8 Rigid body perfect tracking control [103].
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___________ State trajectory generation (stable inversion for unstable discretization zeros)
. i . lant
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—o0 r :

S
(T,)

Figure 1.9 Vibration suppression perfect tracking control [111]

Additionally, Chapter 3 proposes a finite preactuation perfect tracking control (FPPTC) method,
which realizes the perfect tracking after a finite preactuation. Chapter 4 proposes a minimum time
preactuation considering the control input and plant output constraints. Chapter 5 proposes an

optimal state trajectory generation method without preactuation.

1.4 Outline of the dissertation

The structure of this doctoral thesis is shown in Fig. 1.12.
In this thesis, in Part I, feedforward control methods to overcome the continuous-time unstable

zeros are proposed. When the plant has unstable zeros in continuous-time domain, the desired state
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Figure 1.10 Multirate adaptive robust control (MARC) [104]
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Figure 1.11 Repetitive perfect tracking control (RPTC) [13,112]

trajectory diverges and the standard multirate feedforward control [103] cannot be applied.

Chapter 2 extends the desired state trajectory generation method to apply systems with unstable
zeros in the continuous-time domain (preactuation perfect tracking control: PPTC), which is a sta-
ble inversion method for unstable intrinsic and discretization zeros without approximation. Stable
inversion for unstable intrinsic zeros is performed by state variable trajectory generation by time axis
reversal and imaginary axis flipping. The proposed method can be applied to any reference trajectory
as long as the (n — 1)th derivative of the reference trajectory is available (where n denotes the order
of the nominal plant). Then, stable inversion for unstable discretization zeros is performed by the
multirate feedforward control [103]. The point is that the problem of unstable intrinsic zeros and
discretization zeros are decoupled. The perfect tracking for all time domain, in theory, is possible by
infinite time preactuation. According to the experimental results, the maximum error is reduced by
93 % and 43 % compared to ZPETC method (single-rate approximated model inversion, see Section
2.3.1) and CPMI method (continuous-time preactuated model inversion, see 2.3.2), respectively.

Chapter 3 proposes a state trajectory regeneration method by redundant order polynomial to match
the state variable after the preactuation. Although this method abandons perfect tracking during
preactuation, it guarantees perfect tracking after preactuation. Moreover, the tracking error during

finite time preactuation is reduced by the regenerated state trajectory obtained by the optimized
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redundant order polynomial. According to the experimental results, the maximum tracking error is
reduced by 66 % and 34 % compared to TSA (Truncated series approximation method, see Section
3.3) method and truncated PPTC method, respectively.

Chapter 4 proposes a minimum time preactuation method with an optimized state trajectory con-
sidering control input and tracking error constraints. The proposed method generates an optimal
state trajectory for a given reference and minimum time while explicitly considering the actuator, i.e.
peak force, and stroke, i.e. maximum undershoot, limitations of the system. A multirate feedforward
scheme is subsequently presented to obtain a discretized control input that perfectly tracks the de-
signed optimal continuous state trajectory. In comparison to conventional finite preactuation methods
in simulation, the proposed approach reaches an order of magnitude lower tracking error bounds.

Chapter 5 proposes an optimal state trajectory regemeration method without preactuation. The
original state trajectory, which requires the infinite preactuation, is generated by PPTC method.
Then we regenerate the state trajectory between the start and end time of the reference motion
trajectory. This method is an extension of the method proposed in Chapter 4. In the method of
Chapter 4, perfect tracking after preactuation is guaranteed by regenerating the state trajectory during
preactuation, whereas this method guarantees only after the end of the reference motion. The state
trajectory during the reference motion is optimized with respect to the control input and plant output
constraints. A multirate feedforward scheme, which is a stable inversion for unstable discretization
zeros, is subsequently presented to obtain a discretized control input that perfectly tracks the designed
optimal continuous state trajectory.

Chapter 6 proposes a multirate feedforward based on modal form. Multirate feedforward control
has been proposed to achieve perfect tracking for a plant with unstable discretization zeros. However,
multirate feedforward control requires controllable canonical form and inversion of a controllability
matrix, both of which are known as numerically ill-conditioned. Chapter 6 proposes a multirate
feedforward control method based on modal form to address these problems. Moreover, the intersample
behavior is improved compared to the conventional full order multirate feedforward. The effectiveness
of the proposed method is validated through simulation results.

In Part II, tracking control methods for pneumatically actuated stage with time delay are proposed.
The aim of this part is to replace the linear motors implemented on coarse stages with the pneumatic
actuator. The benefits are lightweight, low price, and low heat generation. However, it has following
disadvantages: nonlinearity, delay, and position-dependent resonances. These disadvantages limit the
control performance. Because of these disadvantages, pneumatic actuators are not commonly used in
precision motion control applications [102].

To compensate the input delay, Chapter 7 proposes a modified Smith predictor, which can be used for
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an integrative system. The proposed method achieves maximum tracking error 135 um and standard
deviation of the tracking error 19.5 um (see Fig. 7.12 and Tab. 7.3). The results are considered as very
accurate because literature [113] states that the positioning accuracy of pneumatic actuated systems
is 100 — 500 pm at best.

To compensate the position dependent resonances, Chapter 8 proposes a wave equation model,
taking into account the damping of the system. Wave equation model is composed of delay elements
(internal delay) and a first-order filter. Using this model, a wave cancellation filter is proposed for
canceling all the resonances and anti-resonances. This filter comprises delay elements and a first-order
filter. Commonly, wave equation model and controller ignores the damping terms [114-116]. The
damping considerations for the controller is important for a stability analysis in frequency domain.
The proposed method can model the damping of the resonances and anti-resonances separately. The
experimental results indicate that —19 dB, —23 dB, and —16 dB gain attenuations are achieved for
the first, second, and third modes, respectively (see Fig. 8.14(d)).

Chapter 9 reviews the proposed PPTC, FPPTC, minimum time PPTC, Optimal state trajectory
generation without preactuation, multirate feedforward based on modal form, modified Smith pre-
dictor, and wave cancellation filter. Chapter 9 states strategies for compensating unstable zeros and

delays and concludes the contributions of the thesis.
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Chapter 2

Infinite Preactuation Perfect Tracking
Control by Multirate Feedforward and State
Trajectory Generation based on Time Axis

Reversal

Abstract

A plant with unstable zeros is known to be difficult to control because of the initial undershoot
of its step response and the unstable poles in its inversion system. There are two reasons why a
plant has unstable zeros in the discrete time domain: 1) non-collocation of actuators and sensors,
2) discretization by zero-order hold. Problem 2) has been solved by the perfect tracking control
(PTC) method based on multirate feedforward control proposed by our research group. However, the
conventional PTC method cannot achieve perfect tracking for a plant with continuous time unstable
zeros generated by 1) due to divergence of the desired state trajectories. This chapter proposes
a preactuation perfect tracking control (PPTC) method to solve problem 1) by a state trajectory
generation based on a time axis reversal. This chapter verifies the effectiveness of PPTC by simulations
and experiments in comparison with several single rate feedforward control methods. Additionally,
this chapter clearly shows the role and importance of the multirate feedforward control by comparing

a continuous-time domain approach with preactuation.

2.1 Introduction

Tracking control with zero gain and phase errors between the desired and output trajectories at every

sampling point can be achieved, in theory, by model inversion (i.e. pole-zero cancellation). However,
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a plant with unstable (i.e Non-Minimum Phase, NMP) zeros gives rise to an initial undershoot when
stepped (Fig. 1.3) and highly oscillatory or unstable control trajectories when inverted [73,74]. NMP
zeros of discrete transfer functions can be classified as 1) intrinsic zeros proper to the plant dynamics
(e.g. mnon-collocated placement of sensor and actuator) and 2) discretization zeros due to signal
sampling (e.g. fast sampling rates) [117]. Note that, discretization zeros are unstable when the
relative order of the continuous time plant is greater than two even without continuous-time unstable
zeros [55].

Extensive research has been dedicated to the design of tracking control methods for systems with
NMP zeros. Existing proposals can be classified as (i) approximate model-inversion methods and (ii)
preactuated model inversion methods [118]. The straightforward way to implement an approximate
inversion is to cancel stable poles and zeros while ignoring NMP zeros, i.e NPZI-method [30]. This
approach exhibits both magnitude and phase errors, hence, zero-magnitude-error tracking control
(ZMETC) [119] and zero-phase-error tracking control (ZPETC) [59] methods have been proposed and
improved upon. Despite the stable control trajectory, NPZI, ZMETC, and ZPETC may not yield
satisfactory tracking performance due to the approximations involved (depending on the system and
performance specifications).

Preactuated model inversion can achieve perfect tracking with infinite preview (i.e. knowledge of
future references) and preactuation (i.e. actuation applied a time-interval before the actual output of
the system). Continuous-time domain stable inversion methods are proposed in [22,70,71,120-122].
This chapter unifies these proposals as CPMI or continuous-time preactuated model-inverse methods.
However, these approaches don’t consider the effect of the zero-order hold. All mechatronic systems
using digital control have zero order hold. There lays the key difference with the proposed preactuated
multirate feedforward control. Alternatively, a discrete-time domain approach is proposed in [72],
which compensates both intrinsic and discretization unstable zeros, simultaneously. This method can
achieve perfect tracking at each sampling point, but could cause high oscillations in the inter-sampling
behavior by direct cancellation of the discretization zeros [73,74]. For high-precision motion systems
such as wafer scanners and printing systems, preactuation methods are actively proposed and applied,
focusing on iterative learning control and linear periodically time-varying (LPTV) systems [123,124].

This chapter proposes a preactuation perfect tracking control (PPTC) method and experimentally
validate its effectiveness. The PPTC method solves problems 1) and 2) separately, regardless of the
desired trajectory given it is n — 1 differentiable (where n denotes the order of the nominal plant).
First, the unstable intrinsic zeros in the continuous time domain are offset through a state trajectory
generation using a time-axis reversal. Then, the stable inversion of the discretization zeros is calculated

through a multirate feedforward approach [103]. Additionally, this chapter thoroughly compares PPTC
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with both approximate and preactuated model inversion methods. This chapter also shows that it
is impossible to compensate for the zero-order hold delay by just shifting (previewing) the reference
of CPMI method. The considered system has several intrinsic and discretization unstable zeros for
which conventional approximate methods are unable to achieve perfect tracking. Note that, due to
the presence of continuous time unstable zeros in the lower frequency range, it is difficult to design
high-bandwidth feedback controllers. Simulation and experimental results show that the proposed

method effectively reduces the tracking error.

2.2 Notations and definitions

The plant in continuous time domain is defined as P,.(s). Ps[zs] denotes the discretized plant of
P_.(s) by the zero-order hold with sampling time T,,, where s denotes a complex variable for Laplace
transform and z; = e*Tv.

A continuous-time transfer function of the nominal plant is

B(s)
P,(s) = , 2.1
=50 (21)
where A(s) is nth order and B(s) is mth order
Afg) = LR o
0 (2.2)
b 8™ + by 18™ L - 4 by
B(s) = .
bo
Note that (2.1) is irreducible. The state space realization by controllable canonical form is
CB(t) = Acm(t) + bcu(t)a y(t) = Ccib(t), (23)
where
T
x(t) = |21(t) 22(t) ()|
[0 1 o0 0 |
0 0 1 0
A=
(2.4)
|—@G0 —ar —a2 - —0p-1|
T
b.=10 0 bo|
— bl an
C., = 1 E K 0 0
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The discretized plant by a zero-order hold with sampling time T, is defined as
xlk + 1] = Asx[k] + bsulk], yl[k] = csx[k] (2.5)

T’U,
A, = eAcT“, b, = €ACTdeT, Cs = C,. (2.6)
0

In the discrete transfer function, it is defined as

Po[zs] = cs(z,I — Ag) " 'b,. (2.7)

2.3 Single-rate model-inversion methods
2.3.1 Approximate model-inverse methods

When a nominal plant P,[z;] discretized by zero-order hold has an unstable zero, the inversion
system in the feedforward controller P, ![z,] is unstable. To avoid this problem, several approximate
model-inverse feedforward controllers P 1[z,] are proposed in literature. A generalized block diagram
is shown in Fig. 2.1 in which T, and T, denote the sampling and control periods, respectively. In
this section, T, = T, because only single-rate (z; = €’“*) control methods are considered. The

approximate approaches decompose the nominal plant in a stable B%[z5] and unstable part B"[z]

O R SR S 28)

Bust[zs] — bunuZ;Lu + bu(nu—l)Z?u_l + -4 bu[); (29)

where n, denotes the order of B"'[z,]. The feedforward controller is then designed as

2 1 Alz]

Cralesl = Pllesl = iy

n

(2.10)

The difference between the three prominent methods (NPZI, ZPETC and ZMETC) is the design of the
approximated unstable zeros BUSt [zs] and ¢ (0 < ¢ € Z). A comparison between the three methods is
listed in Tab. 2.1. A Bode plot of tracking control performances of single-rate model-inversion methods

is shown in Fig. 2.3, where a plant model shown in Fig. 2.17 is used for case study.

NPZI method [30]

NPZI method has the least computation load in the three methods. B,[zs] is designed by

B[] = B! [z])|.,-1 = B™[1] (2.11)

to compensate the DC term. ¢ in (2.10) denotes the relative order of A[zs] and B%*[z].



20

Chapter 2. Infinite Preactuation Perfect Tracking Control

Approximated plant inverse

rlk]i ———— | uolk k Plant t
HE ol EuH ++Au[] (;{z) u(t) e y(t)
"""""""" Crolzs]
+ f[k] S
P, |z, <
| ]yo[k] y[k] (o)

Figure 2.1 Approximated plant inverse feedforward control configuration (Cjs[zs] = P, *[2s]).

H and S denote a holder and a sampler, respectively.

Table 2.1 Comparison between NPZI, ZPETC, and ZMETC ( [30]). Y[zs] and R[zs] denote Z
transformed signal of y(t) and r(¢) shown in Fig. 2.1 with sampling time T,.

Y
Method Cyflzs] RFS} Note
Zs
=4 A o quust o
NPZI M Zth[l[]Z] low computation cost
S ZS us us
Z_qA[Zs]BuSt [Zs] Z—unst [zs]Bust [Zs] Y[Z ]
ZPETC . ! ® ! I < ——— ) = 0 (zero phase error
g L A e
z Zs z Zs Zs .
ZMETC WB}M[%] SB]‘%SW Rl = 1 (zero magnitude error)
80 T T PA - R <
— --—-NPZI .
g |- - zpETC el ]
3 40f |—ZMETC /,«' e 3
= 20f e e ;
-20 : :
10° 10t 10? 10°
180 .
= 9F
=
g 0 ey (i R
s ~Z
&~ of .
-180 :
10° 10t

Frequency [Hz|

Figure 2.2 Example of tracking control performance of single-rate model-inversion methods
Ctslzs]Ps[2s]2s7"¢, where npr. denotes the previewed number of samples for ZPETC. Plant

shown in Fig. 2.17 is used for case study.
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Continuous-time Preactuated Model-Inverse method
(Stable inversion for continuous-time unstable zeros)

" o (0) uo[K] ulk] u(t) DA y()
/0 F*(t — 7)Acprarcpmi(T)dT ﬁf)u @ sl i — P.(s)

Stable part feedforward control input

Unstable part feedforward control input

[ Fot(E — 7) Acpmircpi(—7)dT |

S
(1)

T=—t

Figure 2.3 Continuous-time preactuated model-inverse method.

State trajectory generation
with time axis reversal Multirate feedforward
(stable inversion for unstable intrinsic zeros) (stable inversion for unstable discretization zeros)

Stable part state trajectory generation

4T, e+ | S T4l + 1] [ — Uo[1] -1
[ = B -z 'A)— L}

Plant y(t)

Unstable part state trajectory generation

[ ZT' o~ ()]

f=—1

Figure 2.4 Multirate feedforward control with state trajectory generation based on time axis

reversal [125]. S, H, and L denote a sampler, holder, and lifting operator [110], respectively. z

sT, 8Ty,

and zs; denote e and e’ %, where T, = nT,, respectively.

ZPETC method [59]
ZPETC method considers the dynamics of B"[z,]. B"![z,] is designed by

Bust[, 1 — (BUSt[ZS]‘Zs:1)2 _ (BuSt[l])2
B"™ 7] = Bl B[ (2.12)

to achieve zero-phase-error characteristics. ¢ in (2.10) denotes the relative order of Alzs]B}™|z,] and

B™(z,]. Here, BY*[2] is defined by

B?St[zs] = buOZ?u + bulz?u_l R bunu (213)

Under ¢ samples previewed reference trajectory, the zero-phase error characteristics is achieved:

(- )

0<w<7/T, (2.14)

ZMETC method [119]
BUt[z,] is designed by

BUSt[zs] = BzJ: [Zs] (215)
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to achieve zero-magnitude-error characteristics. ¢ in (2.10) denotes the relative order of Alzs] and

B[] BY**[2].

2.3.2 Continuous-time preactuated model-inverse methods

Several continuous-time preactuated model-inverse (CPMI) methods are proposed in [22,70,71,120—
122]. However, these studies don’t consider the existence of the zero-order hold in the digital control.
The key difference between the CPMI methods and the proposed PPTC method is the zero-order hold
consideration by multirate feedforward control. A block diagram of CPMI method is shown in Fig.

2.3.

Step 1: Stable-unstable decomposition

B(s)™! defined in (2.2) is decomposed into a stable part F*'(s) and an unstable part F"(s) as

follows:
-1 _ bO
Ble)™ = b 8™ + b1 4+ bg (2.16)
— Fst(s) -I—FUSt(S),
i)y =L""1 [FSt(s)] st = L7 [FuSt(—s)] . (2.17)

Note that F"*(—s) is stable.

Step 2: Stable part feedforward control input

Stable part feedforward control input is calculated by a convolution between the reference

ACPMI""CPMI (t) and fst (t)

t
ufy(t) = / f(t = 7)Acpamiropm (7)dr, (2.18)
where
Acpmr = ™ [ao aip - Apoi 1} ;
0 - (2.19)
TCPMI = [1 4. 0%] r(t)

(2.18) can be written as
t
ufy(t) = / [t = 7) Acpamirepwa (7)dT (2.20)
0

assuming rcpmi(t) = 0 when ¢t < 0.
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Step 3: Unstable part feedforward control input
Unstable part feedforward control input is calculated by 1) a convolution between the time axis
reversed reference Acpyircpmi(—7) and the stable signal fU'(f —7) and 2) a time axis reversal. This

procedure results in a infinity time preactuation for continuous-time unstable zeros compensation.

t

ulft (t) = / o8t = 7)Acpwirepmr (—7)d7 | (2.21)

oo T=—t

Step 4: Total feedforward control input
Total feedforward control input is calculated by a sum of the stable and the unstable part feedforward

control input.
uo(t) = ufy(t) + ufy (t) (2.22)

Then uys(t) is sampled into uyss[k] by a zero-order hold, where uyslk] = uyss(kTy), (k € Z). No
consideration of the zero-order hold causes a delay. This will be discussed in the section 2.6.6 and Fig.

2.22.

2.4 Preactuation perfect tracking control

This chapter proposes a preactuation perfect tracking control (PPTC) method to design a stable
inversion feedforward controller for plants with unstable intrinsic and discretization zeros. This method
solves the unstable zeros inversion problem in two steps. First, the stable inversion for the unstable
intrinsic zeros is calculated using a time axis reversal in a continuous time domain. Next, the stable
inversion for unstable discretization zeros are calculated using a multirate feedforward proposed by

[103).

2.4.1 State trajectory x, generation

This section generates the state trajectory x4 for the multirate feedforward (see Fig. 2.4). The state

trajectory x4 is defined as

md(t)z[xld(t) Zoalt) - xnd(t)f (2.23)

Due to the controllable canonical form realization (see (2.4)),

xd(t)z[xld(t) pr1a(t) - pnflxld(t)f, (2.24)
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where p denotes the Heaviside operator [37]
According to (2.3), to track the reference position trajectory r(t), the desired state trajectory x4(t)

should satisfy

r(t) = ccxaq(t)

C () T
pr1a(t)
=1 & oo o o} PPaia(t) | (2.25)
L™ aa(t) ]
From (2.25) and (2.2), x4(t) is obtained by
1
T14(t) = ——r(t 2.26
1(t) = 557 (2.26)
Therefore, whole vector x4(t) is obtained by
1
za(t) = ——1(t), 2.27
o(8) = Fm (2.27)
where

(2.28)

However, (2.27) has unstable poles when the plant P, (s) has unstable zeros. To prevent the diversion
of the state trajectory x4(t), the stable-unstable decomposition and time axis reversal techniques are

used.

Step 1: Stable-unstable decomposition

B(s)™! defined in (2.2) is decomposed into a stable part F*'(s) and an unstable part F"(s) as

follows:
-1 _ bO
O S S S (2.29)
= P (s) + (),
Pt = L7V [F(s)] ) = £ [Fst(—s)] (2.30)

Note that F"'(—s) is stable.
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Step 2: Stable part state trajectory generation

The desired state trajectory @5 (t) for the stable part is forwardly generated as follows.

w0 = [s0) w50 - an0)]
_ / Pt — 7)r(r)dr (2.31)

(2.32) can be written as
¥ t)= [ 't —7)r(r)dr (2.32)

assuming r(t) = 0 when ¢ < 0.

Step 3: Unstable part state trajectory generation

The desired state trajectory x}**(¢) for the unstable part is generated by

() = [l ®) a)  amo)]

t=—t

- / PN T (—n)dr| (2:33)

x5 (t) is calculated as follows. First, a convolution of the time reversed reference position trajectory
r(—t) and the stable signal fUs*(¢) is calculated. Next, the time axis is reversed. The mathematical

proof is provided in [126].

Step 4: State trajectory generation

The state trajectory x,4(t) is obtained by

za(t) = 2 (t) + 23 (L), (2.34)

2.4.2 Feedforward input u, generation from x4

The effect of unstable discretization zeros can be compensated by using the multirate feedforward
control [103]. Fig. 2.4 shows that there are three time periods T}, T,,, and T, denoting the periods for
y(t), u(t), and r(t), respectively. These periods are set as T, = nT,, = nT,,.

The multirate system of (2.5) is given as

x[i + 1] = Axz[i| + Buli], y[i| = cx[i], (2.35)
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Figure 2.5 Photograph of the 6-DOF high- Figure 2.6 Fine stage model of the scanning

precision stage. motion z and the pitching motion 6,.

where
A=A", B= [Ag_lbs A" 2%, .. A, b,

(2.36)

c=cs, x[i] =x(iT},)
by calculating the state transition from ¢ = iT,. = kTy, to t = (i + 1)T,, = (k + n)T,. Here, the input

vector u[i] is defined in the lifting form
uli]

unfil]

w(kTy) u((k+1)T.) - u((k+n—1)Tu)}T. (2.37)

I
<
5
=
<
no
=

—

According to (2.35), the feedforward input u,[i] is obtained from the previewed state trajectory xq[i+1]

as follows:
w il = B~ (I — 27 A)xyfi + 1], (2.38)

where z = e5Tr.

2.5 Simulation study: 8 types of zeros locations

To investigate the relationship between the zeros locations, the generated state trajectory, and the
control input, this section shows simulation results for 8 types of zeros locations. This section uses
a setup shown in Fig. 2.5 and focuses on a translational motion and a pitching motion. The model
shown in Fig. 2.6 considers the misalignment between the center of gravity, the center of rotation, the

actuation point, and the measurement point.

T (8)

'm,(
fa(s)

This simulation deals with a model . The derivation of the model is explained in Appendix A.
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Figure 2.7 Bode diagram of the simulation models.

We rewrite (A.15) as

(b282 + b15 + bo)

P.(s) = 2.39
(8) = (5370 X 107)(s2 + 835 + 2100)(? & 255 1 11000) (2:39)
by = 98000(L 5 — Lg2)(Lsm — Lg2) + 1400L ¢4 L, + 1900
by = L, L,,8.0 x 10% + 3.0 x 10*
(2.40)
bo = Lz Ly2.0 x 108 — 9.6 x 10° + 2.2 x 107
Ly = —0.051
assuming a current controller model is a first-order with pole at s = —10000 rad/s. By changing the

actuation height Ly, and the measurement point L,,, the location of zeros is changed according to
(2.39). The Bode diagrams for 8 cases are shown in Fig. 2.7. Reference trajectory is designed as step
trajectory interpolated by 15th order polynomial (see Fig. 2.8(a)). Step time is set as 0.05 s. Sampling
time is set as T;, = 400 us

In the following section name, “in continuous time domain” is omitted.

Plant with no zeros (casel)

Taking Ly, = 0.010 m, and L,, = —0.36 m, (2.41) is obtained. Discretized transfer function by
zero-order hold is shown in (2.42). The denominator polynomial (2.43) in discrete time is common to
the all cases (case 1-8).

The simulation results are shown in Fig. 2.8. It is seen from Figs. 2.8(b) and 2.8(c) that, the three
methods NPZI, ZPETC and ZMETC are affected by approximation of the unstable discretization

zeros, resulting in tracking errors. Since there are no zeros, it can be seen that the state variable
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trajectory x4(t) shown in Figs. 2.8(e) and 2.8(f) coincides with the reference values of each dimension.

_2.2x107

Pe(s) = W (2.41)
—12
Pl = 1.066 x 10712 (2, + 15.29) (2, + 1.470) (25 4 0.2188)(z, + 0.01472) (2.42)
Alzs]
Alzs] = (25 — 0.01832)(22 — 1.9672, 4+ 0.9677) (22 — 1.9882, + 0.9902) (2.43)

Plant with a stable zero (case2)

Taking L, = —0.025m, and L,, = —0.78 m, (2.45) is obtained. The simulation results are shown
in Fig. 2.9. Since there is a stable zero on the real axis in continuous time, as shown in Figs. 2.9(e)
and 2.9(f), the state variable trajectory x4 is first-order lagged compared with the reference trajectory

r(t). As a result, postactuation is performed as shown in Fig. 2.9(d).

5 S
Py(s) = 19 1?4((3)+ 140)

1.058 x 10710(zS +6.060)(zs — 0.9449)(z5 + 0.5230)(zs + 0.03172)
Alz]

(2.44)

PSQ[ZS} = (245)

Plant with two complex stable zeros (case3)

Taking L, = 0.0020 m, and L,, = —0.051 m, (2.47) is obtained. The simulation results are shown
in Fig. 2.10. Since there are two complex stable zeros, as shown in Figs.2.10(e) and 2.10(f), the state
variable trajectory x4 is second-order lagged compared with the reference trajectory r(t). As a result,

oscillated postactuation is performed as shown in Fig. 2.10(d).

1900(s? + 16s + 12000)
Fral) = AG)

150 x 107%(z, + 1. s +0. 2 _1.992z, +0.
Prgjey] = 2150 X 10 (25 + 1.899)(z z E) 0]7898)(,28 992z, + 0.9938) (2.47)
Zs

(2.46)

Plant with two real stable zeros (case4)

Taking L, = —0.46 m, and L,,, = —0.0050 m, (2.49) is obtained. The simulation results are shown
in Fig. 2.11. Since there is two stable zeros on the real axis in continuous time, as shown in Figs.
2.11(e) and 2.11(f), the state variable trajectory &, is second-order lagged compared with the reference
trajectory r(t). As a result, postactuation is performed as shown in Fig. 2.11(d).
8.6(s + 5100)(s + 520)

A(s)

—11 _ _
Pofz] = 7.047 x 10~ (25 + 3.156) (2 A([).8]112)(Zs 0.1285)(zs + 0.1629) (2.49)
Zs

Pc4(5) = (248)
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Plant with a real stable zero and an unstable zero (case5)

Taking Ly, = —0.50 m, and L,, = 0.0050 m, (2.51) is obtained. The simulation results are shown

in Fig. 2.12. As a result of an unstable zero on the real axis, x**(¢) has non-zero value in 0 < ¢.

Similarly, =5 (¢) varies in 0.02 s < ¢ due to a stable zero on a real axis. Because of these effects,
both preactuation and postactuation is performed as shown in Fig. 2.12(d). From Figs. 2.12(b) and
2.12(c), PPTC method achieves the perfect tracking not only in 0 < ¢ but also in ¢ < 0.
—620(s — 200)(s + 180)

A(s)

—3.049 x 1079(25 + 1.892)(z5 — 1.081)(z, — 0. s )
Pl = 3.049 x 1079(2z, + 1.892)(z A[Z(]s )(zs — 0.9306)(z5 + 0.07880) (2.50)

Pes(s) = (2.50)

Plant with a real stable zero (case6)
Taking L¢, = 0.13m, and L,, = —0.15m, (2.53) is obtained. The simulation results are shown in
Fig. 2.13. As a result of an unstable zero on the real axis, preactuation is performed as shown in Fig.

2.13(d).

—1.3 x 10°(s — 140)
A(s)
—7.227 x 107 (24 + 5.902) (25 — 1.058) (25 + 0.5101) (2, + 0.03114)

Pgglzs] = Al (2.53)

Pusl(s) = (2.52)

Plant with two complex unstable zeros (case7)
Taking L, = 0.20 m, and L,, = —0.051 m, (2.55) is obtained. The simulation results are shown in
Fig. 2.14. Since there are two complex unstable zeros, as shown in Fig. 2.14(d), oscillating preactuation

waveform is generated.

1800(s2 — 28s + 11000
Per(s) = ( A(s) :

9.034 x 107°(z, + 1.889) (=, + 0.07867)(z2 — 2.010z, + 1.011
Pyrlzs) = X 1077(zs + 1.889) (= Z[ ] )G 2 1 1.011) (2.55)
Zs

(2.54)

Plant with two real stable zero (case8)
Taking L, = 0.30 m, and L,, = —0.090 m, (2.57) is obtained. The simulation results are shown in

Fig. 2.15. As a result of two unstable zeros on the real axis, preactuation is performed as shown in
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Figure 2.12 Simulation results of the plant with one stable zero and one unstable zero (case 5,
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(a) High-precision positioning stage. (b) Model of (a).

Figure 2.16 Experimental high-precision positioning stage and its model [83, 84].

Fig. 2.15(d).
Ps(s) = 470(s — 22)(08))(5 — 140) (2.56)
P — 223X 107°(z, o+ L80T)(z, — L10T)(z — 1.058) (2, + 0.07617) (257

Alz]

Summary of simulation results
As described above, in all the cases 1 to 8, irrespective of the placement of zeros, the tracking error
is zero in every period T, = nT, = 2.00 ms in the PTC and PPTC methods, showing that perfect

tracking has been achieved. The following feedforward inputs are necessary to achieve perfect tracking.

1. Plant with no zeros in the continuous time plant

Neither preactuation nor postactuation is required, and T;. = nT,, preview is needed.
2. Plant with stable zeros in the continuous time plant

Infinite time postactuation is required in addition to preview of T, = nT,,.
3. Plant with unstable zeros in the continuous time plant

Infinite time preactuation is required in addition to infinite time preview.

2.6 Experimental validation
2.6.1 Experimental setup

The considered experimental setup shown in Fig. 2.16 is an air-guided single degree-of-freedom
flexible stage driven by a set of linear motors. The position of the table and the driven carriage are

measured by two linear encoder with 1nm precision. By using interior or exterior division, we can
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Figure 2.17 Measured frequency response and 8th order model for the high-precision stage
shown in Fig. 2.16 (L., = 0.300 m).
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Figure 2.18 Pole-zero map of identified model shown in Fig. 2.16.

measure any vertical imaginary position. In this chapter, the height of measurement point is set as
L,, = 0.300 m by exterior division to have continuous time unstable zeros. The applied force, i.e.
current, is measured through an inductive current sensor with a 25 A range and quantized with a

14-bit A/D converter, i.e 3.05 mA step.

2.6.2 System identification

The dominant system dynamics of the setup are modeled through frequency domain identification
techniques, see [127]. First, the non-parametric frequency response is measured from open-loop exper-

iments using periodic multisine excitations with quasi-logarithmic spacing to cover the wide frequency
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band-of-interest. Subsequently, a 8th order parametric transfer function model P,(s) is estimated it-
eratively using a Levenberg-Marquardt method with a maximum likelihood criterion. Some additional
weigthing is applied in the middle frequency range (10 to 400 Hz) to reflect the region in which high
model accuracy is desired for feedforward design.

The measured frequency response and estimated 8th order model are shown in Fig. 2.17. The iden-
tified continuous time pole-zero map is shown in Fig. 2.18(a), in which P, (s) contains continuous time
unstable zeros at s = +126, +878 and stable zeros at s = —1090, —120, —92.7 + 1.20;5. Additionally,
the pole-zero map of the discretized transfer function with 7, = 400 us is shown in Fig. 2.18(b), in

which Pg[z,] contains both an additional stable and unstable discretized zero.

2.6.3 Conditions

The setup has a current controller as inner loop, which has 1 kHz bandwidth, with 12.5 kHz sampling
and a position controller as outer loop with 2.5 kHz sampling. The position feedforward controllers
are designed with T,, = 400 ps sampling time. The position feedback controller is designed as a
proportional-integral-derivative (PID) controller and a second order shaping filter. The feedback
control performance is shown in Fig. 2.19, which shows that it is difficult to achieve high bandwidth
for a plant with continuous time unstable zeros in the low frequency range. This indicates that the
feedback controller cannot help the trajectory tracking performance. The block diagram shown in Fig.
2.1 is used for NPZI, ZPETC, and ZMETC methods. Note that in the configurations of Fig. 2.1 and
2.4, without modeling error or disturbances, the output of the feedback controller C;[z] is zero.

The target trajectory is given as a 0.05 s step reference interpolated by a 15th order polynomial and

is shown in i.e. Fig. 2.20(a).

2.6.4 Simulation results

Simulation results are shown in Fig. 2.20. Fig. 2.20(f) demonstrates that PPTC method can achieve
perfect tracking without any undershoot or overshoot. In contrast, Fig. 2.20(a) and 2.20(e) show that
the NPZI, ZMETC, and ZPETC controllers create undershoot and/or overshoot. The FB only case
shows a slow response, which demonstrates that a plant with a slow continuous unstable zero cannot
rely on a FB controller only for reference tracking. Fig. 2.21(g) shows that the CMPI method creates
a similar current reference to PPTC with preactuation. However, due to the lack of considering the
zero-order hold, the current reference is delayed compared to PPTC and it results in the tracking error
shown in Fig. 2.20(f). Note that these simulations contain no modeling error and/or disturbances,

hence, the FB current is zero for NPZI, ZPETC, ZMETC, CMPI and PPTC.
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(a) Bode plot of the open loop system. (b) Nyquist plot of the open loop system.

Figure 2.19 Feedback control performance. Feedback controller is designed as a PID controller
and a second order shaping filter. Designed gain and phase margins are 14.2 dB (at 10 Hz) and
37.2 deg (2.8 Hz), respectively.

2.6.5 Experimental results

Because the infinity time preactuation is infeasible, the control input is applied from ¢ = —0.0428 s
to preactuate the system for the CMPI and PPTC methods. This time length is determined by the
aforementioned current sensor resolution. This is 5.38 times longer than the time constant of the
dominant unstable zero in continuous time domain. The effect regarding short time preactuation
compared to the time constant of the unstable zeros is discussed in Chapter 3.

Experimental results are shown in Fig. 2.21. The trend in the experimental results are in good
agreement with the simulations shown in Fig. 2.20. From Fig. 2.21(e) and 2.21(g), during preactuation,
the output position has almost no motion. After preactuation, PPTC has almost no undershoot or
overshoot. As summarized in Tab. 3.1, the proposed method is experimentally validated.

Fig. 2.21(d) and 2.21(h) show that, except the FB only case, the feedback current references are
quite small compared to the feedforward current references. This is because the nominal output y,[k],
which is calculated by the feedforward current reference u,[k] and the nominal plant P,[zs], almost

matches the actual output y(t) due to the well identified nominal model.

2.6.6 Observation: comparison with CPMI and PPTC

As described above, the feedforward current reference is similar between the CPMI method and
PPTC as shown in Fig. 2.20(g) and 2.21(g). The difference of the two methods is the zero-order hold

consideration.
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Figure 2.20 Simulation with 8th order model shown in Fig. 2.17. Note that in (c) and (f), FB

current is zero for NPZI, ZPETC, ZMETC, CPMI, and PPTC due to no modeling error and
disturbance assumption.
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Figure 2.21 Experiment with the stage shown in Fig. 2.16. 8th order nominal model is used for

feedforward controller design.
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Figure 2.22 FError comparison between PPTC and shifted CPMI method. Dots are illustrated
by every T, = nT, (simulation). It shows PPTC achieves the perfect tracking for T, = nT,, and
it’s not achievable by CPMI method.

Table 2.2 Maximum tracking error in pm.

FBonly NPZI

ZMETC ZPETC CPMI

PPTC

Sim 1590 1020

Exp 1580 1020

1360

1300

658

631

20.0 0.00491*

72.3

41.1

* Intersample tracking error

Fig. 2.22 shows that tracking error comparison between PPTC and shifted CPMI methods. It shows

that the zero-order hold delay cannot be compensated by just shifting the current reference even by a

non-integer sample shift. This results clearly shows the importance of multirate feedforward control,

which compensates for the zero-order hold delay. Fig. 2.22(c) shows that perfect tracking is achieved

by PPTC method for every T}, = nT,.

2.6.7 Discussion: Effect of a wrong feedback error calculation

This section shows the importance to calculate the nominal output y4[k] and use it for eq4[k| cal-

culation for the feedback controller. Correct block diagram is shown in Fig. 2.1. Important idea in

r[k]

Approximated plant inverse

Uo| K] Au[k]

u(t)

Plant

T

Chp (2]

+

e[k]

(To)

y(t)

P.(s)

\
O

y[k]

S
(T)

Figure 2.23 Wrong e4[k] calculation by eq[k] = r[k] — y[k] for approximated plant inversion methods.
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two-degrees-of-freedom is to decouple e4[k] from r[k] when there is no disturbance or modeling er-
ror [128]. Simulations are conducted by using a wrong configuration shown in Fig. 2.23. Comparing
Fig. 2.20 and 2.24, the error is increased. Fig. 2.24(d) shows that the feedback controller is used for

the reference tracking, which is undesired for two-degrees-of-freedom control.

2.7  Summary

In the discretized domain, there are two types of zeros: 1) the intrinsic zeros which have counterparts
in the continuous time domain, 2) the discretization zeros generated by discretization by the zero-order
hold. The proposed preactuation perfect tracking control (PPTC) method deals with problem 1) and
2) separately. On one hand, the unstable intrinsic zeros are compensated by the preactuation. On the
other hand, the unstable discretization zeros are compensated by the multirate feedforward scheme
with preview. Multirate feedforward controller generates the feedforward input which achieves perfect
tracking for the designed state trajectory. The simulation results show that the zero-order hold

delay cannot be compensated by just shifting the reference and underline the importance of multirate
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Figure 2.24 Simulation with 8th order model shown in Fig. 2.17 using Fig. 2.23 configuration.
Tracking performance is worse compared to Fig. 2.20 because the feedback controller with the
low bandwidth is used for the reference tracking (see (d)).
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feedforward.

This chapter experimentally validates the PPTC method using a high-precision stage with contin-
uous time unstable zeros. Additionally, this system has a discretization zero. Due to a well identified
8th order model, the experimental results follow the simulations. The experimental result with PPTC

strongly reduces the tracking error and achieves almost zero undershoot.
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Chapter 3

Finite Preactuation Perfect Tracking Control
based on State Trajectory Regeneration by

using Redundant Order Polynomial

Abstract

A plant with unstable zeros is considered to be difficult to control because of initial undershoot of step
response and unstable poles of its inversion system for a feedforward control. A plant has unstable zeros
in discrete time domain because of following reasons: 1) non-collocation of actuators and sensors and 2)
discretization by zero-order hold. Chapter 2 proposes a solution for these problems by using a multirate
feedforward control with state trajectory generation based on time axis reversal. However, this method
requires preactuation for negative infinite time. If we truncate the preactuation for a short time, the
tracking error is not negligible. This chapter proposes a state trajectory regeneration method by
redundant order polynomial to match the state variable after the preactuation. Although this method
abandons perfect tracking during preactuation, it guarantees perfect tracking after preactuation. The

validity of the proposed method is demonstrated through simulations and experiments.

3.1 Introduction

A plant with unstable zeros is known to be difficult to control because of unstable poles of its inversion
system and initial undershoot of step response, as shown in Fig. 1.3. The zeros of the discretized
transfer function can be classified as follows [129] [117]: 1) intrinsic zeros and 2) discretization zeros
[55]. Intrinsic zeros correspond to zeros of the continuous time transfer function. The others are called
discretization zeros. Discretization zeros are unstable when the relative order of the continuous time

plant is greater than two even without continuous time unstable zeros [55].
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g
Table E
Linear encoder 5-
Linear motor 0
Carriage Elat
. . g -180
Air guide =
270
-360 . I
A 10° 10 10 10°
Linear encoder Frequency [Hz]
(a) High-precision positioning stage. (b) Frequency response and its 8th order model.

Figure 3.1 High-precision positioning stage and its model (same as Fig. 2.16(a) and Fig. 2.17).

To design a stable feedforward controller for a plant with unstable zeros, approximated inversion-
based feedforward controllers are proposed: for example, nonminimum-phase zeros ignore (NPZI)
[30], zero-phase-error tracking controller (ZPETC) [59], and zero-magnitude-error tracking controller
(ZMETC) [119]. These controllers handle aforementioned problems 1) and 2) simultaneously because
they are designed using discretized transfer functions.

Compensation methods have been proposed for unstable intrinsic and discretization zeros through
preactuation and preview [118] [72]. In addition, these methods compensate for intrinsic and dis-
cretization zeros simultaneously. A continuous time domain approach was proposed in [122]. This
method ignores the zero order hold that all digital control systems have.

In Chapter 2, we propose a method to solve problems 1) and 2) separately. The unstable zeros
in the continuous time transfer function are managed through a state trajectory generation based
on time axis reversal and preactuation commands. This method can be applied for any reference
trajectory, given its n — 1 th derivative. Here, n denotes the order of the plant in the continuous time
transfer function. Next, the plant discretization problem is solved through the multirate feedforward
control [103]. However, this method requires preactuation of negative infinite time.

In this chapter, we proposes a finite time preactuation method based on state trajectory regener-
ation by using a redundant polynomial in the negative time domain. By using the state trajectory
regeneration and the finite time preactuation with multirate feedforward, the initial state variables of
the plant are matched with the desired initial state variables. As a result, the perfect tracking after
preactuation is achieved. Although this method abandons perfect tracking for the reference trajectory
r during the preactuation, it guarantees perfect tracking after the finite preactuation. The validity of

the proposed method is demonstrated through simulations and experiments.
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Figure 3.2 Pole-zero map of identified model shown in Fig. 3.1(a) (same as Fig. 2.18).

3.2 Experimental setup

The considered experimental setup shown in Fig. 3.1(a) is an air-guided single degree-of-freedom
flexible stage driven by a set of linear motors. The position feedforward controllers are designed with
T, = 400 us sampling time.

The dominant system dynamics of the setup are modeled through frequency domain identification
techniques, see [127]. The measured frequency response and estimated 8th order model are shown in
Fig. 3.1(b). The model has two unstable zeros in continuous time domain (see Fig. 3.2(a)) and the
discretized model by the zero-order hold with T,, = 400 us has two unstable intrinsic zeros and an

unstable discretization zero (see Fig. 3.2(b)).

3.3 Truncated series approximation method [130]

Truncated series approximation (TSA) method is proposed in [130]. This is a filter-based finite

preactuation method. The approximated unstable zeros mode BU*[z,] defined in (2.10) is

D YN
Bust [2s] B“St[l]Zzl:TOak ’

(3.1)
where mr is the order of the series approximation and the «; is the coefficients derived from the Taylor
series expansion [118,130].

3.3.1 Deign results

Design results of the truncated series approximation are shown in Fig. 3.3(a). Here, 7 denotes
the time constant of the dominant unstable zero, which is 7 = 0.00796 s. It shows that the longer

preactuation time (equivalently higher order approximation) achieves the better approximation.



46

Chapter 3. Finite Preactuation Perfect Tracking Control

Frequency responses of the reference r to the output y is shown in Fig. 3.3(b).
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Figure 3.4 Pole-zero map of TSA method.

Comparing with

NPZI, ZPETC, and ZMETC shown in Fig. 2.2, the TSA method almost achieves zero-phase-error

and zero-magnitude-error characteristics in the same time. Pole-zero maps of the approximation are

shown in Fig. 3.4. The unstable poles (created from inversion of unstable zeros) shown in Fig. 3.4(a)

are approximated as finite-impulse-response (FIR) filters.
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Figure 3.6 Truncation effect of PPTC method (see Section 2.4). 7 = 0.00796 s. Figs. 3.5(b)
and 3.6(b) shows that the difference between the truncated between CPMI and PPTC methods

becomes obvious when t,, = —4.87.

3.4 Preactuation truncation problem

The method introduced in Section 2.4 requires preactuation for —oo < t < 0. In practice, infinite

preactuation is infeasible. In this section, a simple preactuation truncation is considered.

0 (k < &)
uy k] = u , 3.2
1 uolk] (otherwise) (32)

where t,, (tpq < 0) denotes the length of the preactuation time.

However, this method cannot achieve a perfect tracking for not only ¢,, <t < 0 but also 0 < ¢
because the actual initial state variable x[0] does not match the initial state trajectory x4[0].

The simulation results are shown in Figs. 3.5 and 3.6. Here, 7 denotes the time constant of
the dominant unstable zero, which is 7 = 0.00796 s. Fig. 3.6 shows the relationship between the
preactuation time ¢, and the maximum error ||e||o. The difference between the truncated CPMI
and PPTC is because the CPMI method ignores the zero-order hold effects (see 2.6.6). The tracking

tpa
error of the truncated PPTC is exponentially reduced by longer preactuation (||e]|oo = €0-9477 ~7-4%),
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Figure 3.7 The relationship between the maximum tracking error and the preactuation time.
Because the CPMI method ignores the zero-order hold, the tracking error of CPMI method does

not decrease even with long preactuation.

3.5 Finite preactuation method by state trajectory regeneration

3.5.1 Original state trajectory x,; generation

First, the state trajectory for PPTC, which requires the infinity preactuation, is calculated by the
method shown in Section 2.4.1. When the system has unstable zeros in the continuous-time domain,
x4(t) is non-zero for ¢ < 0, assuming r(¢) = 0 when ¢ < 0. This is because the unstable part state
trajectory x5 (¢) has a non-zero value in ¢ < 0. Hence, to achieve perfect tracking, non-minimum

phase systems require infinite preactuation [125].

A block diagram of the finite preactuation perfect tracking control (FPPTC) is shown in Fig. 3.9.

3.5.2 State trajectory regeneration

This section regenerates the state trajectory from a given t = t,, (< 0) to ¢t = 0 in order to obtain
a realistic finite preactuation as follows:
0 (t <tpa)
xq(t) = § &a(t) (tpa <t <0). (3.3)
xS (t) + 2 (t) (0 <t)
The idea and the block diagram are shown in Figs. 3.8 and 3.9. The regenerated state trajectory is

defined as x4(t). Although this method abandons perfect tracking for ¢,, < t < 0, it achieves the
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Figure 3.8 Idea of the state trajectory regeneration for x14(t). When the plant has unstable
zeros in continuous-time domain, x14(¢) has non-zero value in the negative infinite time. This
method regenerates the state trajectory for a finite time ¢, <t < 0 as formulated in (3.3). &4(t)
is calculated from Z14(t) by (3.4).
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Figure 3.9 Finite preactuation perfect tracking control (FPPTC).

perfect tracking for 0 < ¢ because it can match x,4(t) and x(¢) by the multirate feedforward.

As defined in (2.4), the plant is realized through the controllable canonical form
} T
Zall) = [Fra(t) Toalt) - Faat)]
~ d ~ dn—l - T
= [Talt) LFalt) - EEa)] (3.4)

where n denotes the order of the plant.

We define Z14(t) as a nyth order polynomial

F14(t) = ag + art + aot® + - - - 4 @y, t"™. (3.5)
The coefficients ag, a1, as, - - ,an, are defined as
a=|ay a --- ap,|- (3.6)

From (3.4) and (3.5), the regenerated state trajectory &4(t) is derived as the function of @ and t¢.

Z4(t) should satisfy the two boundary conditions &4(t,,) = 0 and Z4(0) = x4(0) to realize the finite



50 Chapter 3. Finite Preactuation Perfect Tracking Control

preactuation and perfect tracking after the preactuation. Hence, the minimum order of the polynomial
is 2n — 1 because we have 2n elements in boundary conditions. We define the order of the redundancy

of the trajectory n,

n, =ny — (2n — 1) (3.7)
The desired output y4(t) is calculated by the output equation defined in (2.4),
ya(t) = cq®q(t). (3.8)
From the above, the tracking error e4 during the finite preactuation is

ea(t) = r(t) — ya(t) (3.9)
= —ya(t), (3.10)

assuming r(t) = 0 when t,, <t < 0. From the above, y4(t) and eq are function of a and ¢.

An optimization problem is formulated as (3.11) and (3.12). We minimize the jerk of the output
ya(t) to generate smooth control input. The minimum jerk trajectory has also advantage about less
excitations for high-frequency unmodeled dynamics [20)].

0
minimize J = / (a(t))?dt (3.11)
a() t

pa

subject to  Z4(tpa) =0, &4(0) = x4(0) (3.12)

3.5.3 Feedforward input u, generation from x4

The feedforward control input u, is obtained by the multirate feedforward control as Section 2.4.2.

woi] = B~ (I — 27 Y A)xyfi + 1], (3.13)

where z = e*Tr. The feedforward input u, achieves the perfect state matching for a4 every nT),.

3.6 Simulation

The model shown in Section 3.2 is used for the simulation. The target trajectory is given as a 0.05
s step reference interpolated by a 15th order polynomial and it is shown in e.g. Fig. 3.11(a). This is
same as Section 2.6.

The relationship between the redundancy of the trajectory order n,. and the objective function (3.11)
is shown in Fig. 3.13. In the following simulation and experimental results, n,. is set as 8 because the
objective function is sufficiently small.

The simulation results of the TSA method and FPPTC are shown in Figs. 3.10 and 3.11. Longer
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Figure 3.11 FPPTC method and ¢y, tendency. 7 = 0.00796 s (simulation). Fig. 3.11(d) shows
that FPPTC method achieves the perfect tracking for every T, = nT, regardless of the preactu-

12.8
x10°

preactuation helps the smaller tracking error and smaller control input.

When the preactuation time ¢, is too short, FPPTC method generated an infeasible result. In this

case, an optimal state trajectory generation without preactuation (see Chapter 5) is recommended.

Comparing Figs. 3.10 and 3.11, FPPTC method achieves much smaller error for ¢,, = —2.47 and

tpa =

regardless of the preactuation time ¢,,.

—4.87. Fig. 3.11(d) shows that FPPTC method achieves the perfect tracking for every T, = nT,
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3.7 Experimental validation
3.7.1 Conditions

The same feedback controller shown in Section 2.6 is used (see Fig. 2.19). Designed gain and phase
margins are 14.2 dB (at 10 Hz) and 37.2 deg (2.8 Hz), respectively. The target trajectory is given as

a 0.05 s step reference interpolated by a 15th order polynomial and is shown in Fig. 3.10(a).
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Table 3.1 Maximum tracking error in pm (0.04s < ¢ < 0.06s, tpa = —2.47).

FB only NPZI ZMETC ZPETC Truncated PPTC TSA FPPTC

Sim 1590 1020 1360 658 68.9 173 45.4

Exp 1580 1020 1300 631 65.9 129 43.6

3.7.2 Simulation and experimental results

Simulation and experimental results are shown in Fig. 3.14-3.17. In all comparison, the experimental
results well follows the simulation results. Figs. 3.14 and 3.15 show that TSA method achieves better
performance compared to ZPETC and ZMETC methods. Despite the same preactuation time for
TSA and FPPTC methods, FPPTC method achieves smaller tracking error than TSA method. Figs.
3.16 and 3.17 compare TSA, Truncated PPTC, and FPPTC methods for the same preactuation time

tpa = —2.47.

3.8  Summary

In the discretized domain, a plant has two types of zeros: 1) intrinsic zeros, which have counterparts
in the continuous time domain, and 2) discretization zeros generated through discretization. The
feedforward control is thus difficult because of unstable pole(s) of its inversion system. According
to Chapter 2, the unstable intrinsic and discretization zeros can be managed separately through the
combination of multirate feedforward and state trajectory generation with time axis reversal. However,
this method needs infinite time preactuation.

This chapter proposes a finite time preactuation method based on state trajectory regeneration
using a redundant order polynomial. The proposed method can achieve perfect tracking after preac-
tuation. Owing to the multirate feedforward and controllable canonical form realization, the proposed
method can formulate the state trajectory during preactuation as a polynomial. The polynomial de-
fined trajectory enables us to apply the optimization. The effectiveness of the proposed method is

demonstrated through simulations and experiments.
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Chapter 4

Minimum Time Optimal Preactuation
considering Control Input and Tracking

Error Constraints

Abstract

To achieve perfect reference trajectory tracking, a plant with continuous time unstable zeros requires
an infinite time preactuation. Albeit, this is practically infeasible, as typical high-precision motion
systems target a short time finite preactuation. Truncating the control input to a short time preactu-
ation leads to undesirable tracking errors. This chapter, thus, proposes a minimum time preactuation
method with an optimized state trajectory considering control input and tracking error constraints.
The proposed method generates an optimal state trajectory for a given reference and finite time while
explicitly considering the actuator, i.e. peak force, and stroke, i.e. maximum undershoot, limitations
of the system. A multirate feedforward scheme is subsequently presented to obtain a discretized con-
trol input that perfectly tracks the designed optimal continuous state trajectory. In comparison to
conventional finite preactuation methods, the proposed approach reaches an order of magnitude lower
tracking error bounds. Additionally, this finite time procedure attains, in contrast to conventional
optimization approaches, through a multirate feedforward formulation, perfect tracking during the

main motion after preactuation.

4.1 Introduction

Model-inverse feedforward control is an effective approach for trajectory tracking problems [20, 30].
Classic inversion provides, in theory, exact reference tracking, but leads to internal instability for

systems with unstable zero(s), i.e. nonminimum phase (NMP) systems [131]. In discrete-time domain,
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unstable zeros are classified as 1) intrinsic zeros proper to the plant dynamics (due to non-collocation
of sensor and actuator) and 2) discretization zeros (due to fast signal sampling) [117]. Note that,
discretization zeros are unstable when the relative order of the continuous time plant is greater than
two, even without continuous-time unstable zeros [55].

Extensive research has been dedicated to feedforward control design of NMP systems and applied
in a wide variety of applications, e.g. in scanning stages [1,83], hard disk drives [53] and boost
converters [54]. Existing approaches are typically analytical filter-based and can be categorized as
either i) approximate model-inversion methods or ii) preactuated model-inversion methods. In the
former case, the plant-model approximation results in an inherent trade-off between overshoot and
setting time [30]. In the latter case, an exact continuous time model-inversion for 1) intrinsic zeros
is obtain, albeit introducing tracking errors in the implementation by neglecting the 2) discretization
zeros [70-72]. To address this problem, Chapter 2 proposes a preactuated perfect tracking control
(PPTC) method, which solves problems 1) and 2) separately. On one hand, the continuous-time
unstable zeros are stably inverted by preactuation, on the other hand the discretization zeros are
stably inverted by a multirate feedforward approach [103]. Yet, this procedure requires, as former
exact model-inversion methods, an infinite time preactuation. This is practically infeasible and may
result in undesirably large tracking errors when simply truncating the control input (see Fig. 4.3).

A hybrid approach achieving finite time preactuation through a noncausal Taylor series approxi-
mation (TSA) is proposed in [130]. This method approximates the inverse of the unstable zeros by
a finite order of the Taylor-series expansion, resulting in a finite preactuation. Alternatively, numeri-
cal optimization based approaches have been proposed (e.g. [132]) achieving finite-time preactuation,
albeit at the cost of approximation errors during the main motion after preactuation.

This chapter improves the infinite time preactuation approach proposed in Chapter 2 by adding a
constrained optimization step in order to achieve a minimum time preactuation while maintaining an
exact inverse of the system during the main motion after preactuation. The procedure is based on the
previously proposed two step framework: i) the generation of the desired state trajectory x4(t) from
the reference trajectory r(t) and its derivatives, and ii) the generation of the feedforward input w,i]
from the discrete state trajectories x4[i + 1] through a multirate feedforward implementation [103].
However, this chapter extends step i) by generating an optimal state trajectory for a given reference
and finite time while explicitly considering the actuator, i.e. peak force, and stroke, i.e. maximum
undershoot, constraints of the system. The minimum feasible time is obtained by the bisection method.
The effectiveness of this optimal control problem is demonstrated through simulations using a typical

scanning stage model, whose dominant zero is unstable.
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4.2  Minimum time finite preactuation perfect tracking control

The same notation shown in Section 2.2 is used.

4.2.1 Original state trajectory x,; generation

First, the state trajectory for PPTC, which requires the infinity preactuation, is calculated by the
method shown in Section 2.4.1. When the system has unstable zeros in the continuous-time domain,
x4(t) is non-zero for ¢ < 0, assuming r(¢) = 0 when ¢ < 0. This is because the unstable part state
trajectory «3(¢) has a non-zero value in ¢t < 0. Hence, to achieve perfect tracking, nonminimum

phase systems require infinite preactuation [125].

A block diagram of the finite preactuation perfect tracking control (FPPTC) is shown in Fig. 3.9.

4.2.2 State trajectory re-generation

Due to the stable inversion for the continuous time unstable zeros, x,(t) is non-zero for ¢ < 0,
assuming r(t) = 0 when ¢ < 0. Hence, to achieve perfect tracking, nonminimum phase systems
require infinite preactuation [125].

This section regenerates the state trajectory from a given t = t,, (< 0) to ¢ = 0 in order to obtain

a realistic finite preactuation as follows:

0 (t <tpa)
xa(t) = < Z4(t) (tpa <t <0), (4.1)
x(t) + x5 (t) (0<t)
where &,4(t) denotes the regenerated state trajectory. The regenerated state trajectory is defined by

a piecewise polynomial.

Problem setting

Two constrained optimization problems are proposed for the state reference regeneration.

e Minimum tracking error

A semi-infinite optimization for preactuation tracking error is formalized here as

minimize [ea(®)], = [r(8) - valt)l,, =125 (42)
subject to  Z4(tpa) =0, x4(0) = x4(0) (4.3)
Vt € [tpa,0]

Ymin S y[k] S Ymaz Umin S UUC] S Umaz (44)
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The tracking error e4(t) is minimized over ¢,, < t < 0 taking into account both the physical
constraints of the stage, e.g. stroke ¥Ymin, Ymaz and actuator, e.g. peak current Umin, Umaz-
Although this method abandons perfect tracking over ¢,, <t < 0, it guarantees perfect tracking
for 0 < t by constraining the re-generated state trajectory &4(t) at ¢ = 0 to match the desired
state trajectory x4(t) calculated using (2.34).

Despite the good tracking achieved through this formulation given a certain t,,, the resulting

constrained feedforward output is impeded by a high jerk.

e Minimum jerk input
A second semi-infinite optimization problem for preactuation feedforward input is formalized

here as
mir;ji(%lize [ regl o

subject to  Z4(tpa) =0, x4(0) = x4(0) (4.5)
VE € [tpa,0]

Cmin < ed[k] < emaz, Umin < u[k] < Umaz

Ureq is the control input during the finite preactuation obtained by (4.8).
The objective of this setting is to balance the control performance (i.e. maximum error) and

the smoothness of the control input.

Problem formulation

Eq. (4.2) and (4.5) are optimal control problems where one is interested in finding the input w4
that brings the system from an initial state &4(t,,) = O to a final state x4(0) and that minimizes a
performance criterion while obeying state and input constraints. The difficulty of solving these states
optimal control problem is the need for numerically costly integration. Albeit, this is avoided in the
multi-rate feedforward formulation used here, the plant is realized through the controllable canonical

form

Za(t) = |F1a(t) Foalt) - znd(t)f,
Zga(t) = pT ' E1a(t), q=2,3,--- ,m, (4.6)

where Z14(t) is a piecewise polynomial defined in ¢,, <t < 0. The desired output y4(t) is then defined

as a linear function of Z14(t)

ya(t) = ecZq(t) (4.7)
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Hence, simplifying the evaluation of the tracking error during preactuation in (4.2) to a linear function
of the state vector &4(t). To evaluate the control input during preactuation in (4.5), the multirate

feedforward control shown in (4.12) is applied *.

4.2.3 Multirate feedforward control

This subsection applies multirate feedforward control [103] as Section 2.4.2 to generate the feedfor-
ward input u,, which can achieve the perfect tracking for every nT,,, from x4(t).
Fig. 3.9 shows that there are three time periods T}, T}, and 7T} denoting the periods for y(t), u(t),

and 7(t), respectively. These periods are set as T, = nT,, = nT,. The multirate system of (2.5) is

given as

x[i + 1] = Az[i] + Bu,[i], y[i] = cz[i], (4.9)
where

A=Al B=[Al'b, AT, - Ab, b,

(4.10)
c=c,, z[i| =x(iT,)

by calculating the state transition from ¢ = iT,. = kTy, to t = (i + 1)1, = (k + n)T,. Here, the input

vector u[i] is defined in the lifting form

um:[ul[i] usli] - un[i]]T (4.11)

w(kTy) w((k+1)T,) - u((k+n—1)Tu)}T.

—

According to (4.9), the feedforward output w,[i] is obtained from the previewed state trajectory

xg4i + 1] as follows:

woi] = B~ (I — 27 A)xyfi + 1], (4.12)

where z = e, The feedforward input u, achieves the perfect state matching for a4 every nT),.

*1 Defining the preactuation sample as kiyp = niyp with 4¢p = floor(tpe/nTy). The FF input during the finite
preactuation is calculated by
Ty, T, T T
litp]  wTlip+1] - wT[-1]]
B Y A&[kiy] + B &[kip + 1]
B Y A&[ktp 4+ n] + B L& [kep + 2n)
= . . (4.8)

Ureg = [u

B~1A&[-n] + B~1&[0]
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Table

Linear encoder

Linear motor

Carriage

Linear encoder

Air guide

(a) High-precision positioning stage.

Figure 4.1 Experimental high-precision positioning stage and its model [83,84].
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Figure 4.2 Pole-zero map of identified model shown in Fig. 4.1.

4.2.4 Search minimum preactuation time

The minimum preactuation time considering constraints is searched by the bisection method. This
section implements a dual-loop optimization, in which an unconstrained upper loop relaxes the given
finite time constraint for the inner semi-infinite optimization and checks feasibility, i.e. it iterates as

long as the inner loop doesn’t converge.

e Step 1
Set a initial preactuation time t,, = ¢; and check the feasibility. Set a initial upper bound
(infeasible preactuation time) ¢, = 0.
e Step 2
Set a new test preactuation time t,, = %
e Step 3
Apply optimization in Section 4.2.2 and check the feasibility.

— If it is feasible
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Set t; = tpq.
— If it is infeasible
Set t, = tpa.
e Step 4

Iteratively preform step 2 and 3 until ¢, — t; < T;..

4.3 Simulation
4.3.1 Plant model and simulation condition

The simulations in this chapter are based on the experimentally obtained model of the setup shown
in Fig. 4.1. This stage can be modeled by a 6" order plant shown in Figs. 4.1(b) and 4.2, which has
two unstable zeros in continuous time domain. Additionally, this model has a discretization unstable

zero in Ps[z].

4.3.2 Parametrized B-spline implementation

Multirate feedforward is a sampled based approach, hence, the optimization function is limited to the
short sampling time T;,. In order to guarantee constraint satisfaction in continuous time domain the
optimization problem is defined in terms of B-spline coefficients. The state vector &4(t) (tpe <t < 0)

is defined as a B-spline of degree p > n [22] as

m

F1a(t) =Y _p;BY(t) (4.13)

§j=0
where p;, j = 0,...,m are the coefficient or control points. Let k = [KOy vy Kny,o, ] DE a given knot
vector, extended to add flexibility to the optimization problem [133]. The j-th B-spline basis function
is chosen of degree m > n to guarantee n-order differentiable state trajectories.

The degree of the B-spline is set as 20 and the number of the free knots is set as 3.

4.3.3 Fixed preactuation time perfect tracking control: Comparison with TSA method and

truncated PPTC method

Fig. 4.3 shows the comparison between the truncated PPTC, TSA, and the proposed method with
|led|loo minimization. Preactuation time t,, is fixed as —3.37. Simply truncating the control input in
the PPTC method to the given preactuation time, accumulates considerable error and requires low-

bandwidth feedback action. As seen in Fig. 4.3(a), the stage doesn’t reach the desired end-position
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Figure 4.3 Comparison between TSA, truncated PPTC and proposed method (min ||eq||os)-
tpa = —3.37 = —0.0264 s is fixed for the three methods. Proposed method achieves the perfect
tracking is achieved after preactuation (0 < t).

r = 1.6 mm in the given time window.

The control input constraints are set as Uyqe = 1.23 A and Umin = —Umaz, Which are the maxi-
mum/minimum control input of PPTC shown in Fig. 2.20(g). Fig. 4.3(c) shows that the feedforward
input of the FPPTC method effectively respects those imposed constraints. Fig. 4.3(b) then shows
that the tracking performance of FPPTC (min. [|eg4||s) exceeds that of both TSA and truncated
PPTC for the same preactuation time t¢,,. Fig. 4.4 finally shows the regenerated state trajectory of
the FPPTC method for ¢,, <t <0, which satisfy the imposed boundary conditions.

4.3.4 Fixed preactuation time perfect tracking control: Objective function comparison

This section shows the tendency difference of the choice of the objective function under the fixed
preactuation time. Preactuation time ¢,, is fixed as —3.37. The control input constraints are set as
Umaz = 1.23 A and Upip, = —Umaz, Which are the maximum/minimum control input of PPTC shown
in Fig. 2.20(g).

Fig. 4.5 compares the minimization of ||eq||1, ||€d||2, ||€d||co. The generated feedforward input shown
in Fig. 4.7 contains high-frequency contents. It may excite unmodeled plant dynamics.

To balance the control performance (i.e. maximum error) and the smoothness of the control input,
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Figure 4.6 Comparison between objective functions (min ||ea||oo, ||tff||oos ||Urs]|oc With eq constraints).

the derivatives of the control input is set as an objective function. “||i¢f||~” denotes the condition

defined in (4.5), which has constraints for the state variables and maximum/minimum control input.

It generates smooth control input but the tracking error become larger. ||t f¢||s0,eq” denotes the

condition defined in (4.5), which has constraints for the state variables, maximum/minimum control

input, and the maximum undershoot value e, .

As shown in Fig. 4.7, an expected trade-off exists between the amount of high-frequency contents

and the maximum tracking error. The optimal variant of the proposed approach is, thus, more a

question of the user’s preferences and application objectives.
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Figure 4.8 Minimum time preactuation perfect tracking control considering control input con-
straints. tp, = —2.417 = —0.192s.
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Figure 4.9 Minimum time preactuation perfect tracking control considering control input con-
straints. tp, = —3.327 = —0.264 s.

Please note that, independent of the optimization formulation chosen, the presented method

achieves, in contrast to conventional finite preactuation approaches, perfect tracking after preactua-

tion, i.e. for t > 0 (see Fig. 4.3(d)).
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4.3.5 Minimum time preactuation perfect tracking control

Control input constraints

Simulation result of the minimum time preactuation perfect tracking control with control input
constraints is shown in Fig. 4.8. The control input constraints are set as Uyqe = 1.23 A and uy, =
—Upaz, Which are the maximum /minimum control input of PPTC shown in Fig. 2.20(g). The feasible
minimum preactuation time is t,, = —2.417 = —0.192s. The perfect tracking is achieved after

preactuation (0 < t).

Control input and maximum error constraints

Simulation result of the minimum time preactuation perfect tracking control with control input
constraints and the maximum error is shown in Fig. 4.9. The control input constraints are set as
Umaz = 1.23 A and Upin, = —Umaz, Wwhich are the maximum/minimum control input of PPTC shown
in Fig. 2.20(g). The maximum error constraint (equivalently maximum value of undershoot) is set
as emaz = 10 pm. The feasible minimum preactuation time is t,, = —3.327 = —0.264 s. Due to the
maximum error constraint, the minimum feasible preactuation time is longer than the result shown in

section 4.3.5. The perfect tracking is achieved after preactuation (0 < t).

4.4  Summary

This chapter proposes a minimum time preactuation method for nonminimum phase systems
through an optimization approach explicitly considering both control input and tracking error
constraints. Previously proposed exact model-inversion methods, achieve perfect tracking, in theory,
for systems with unstable zeros, albeit at the cost of an infinite preactuation. Input truncation or
model approximation both lead to undesirable tracking errors, hence, the authors propose an optimal
control formulation to regenerate the state trajectories in a minimum feasible time while imposing
system constraints. A multirate feedforward scheme is subsequently presented to obtain a discretized
control input that perfectly tracks the designed optimal continuous state trajectory.

In comparison to conventional finite preactuation methods such as the TSA method, the proposed
approach reaches an order of magnitude lower tracking error bounds. Additionally, this finite time pro-
cedure attains, in contrast to conventional optimization approaches, through a multirate feedforward

formulation, perfect tracking during the main motion after preactuation.
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Chapter 5

Optimal State Trajectory Regeneration for
Multirate Feedforward: No Preactuation

Approach

Abstract

To achieve perfect reference trajectory tracking, a plant with continuous time unstable zeros requires
an infinite time preactuation. However, this is practically infeasible. Preactuation as short as possible
is desirable for high-precision motion systems. This chapter, thus, proposes an optimal state trajectory
regeneration method without preactuation. The original state trajectory, which requires the infinite
preactuation, is generated by PPTC method (see Chapter 2). Then we regenerate the state trajectory
between the start and end time of the reference motion trajectory. This method is an extension of
the method proposed in Chapter 4. In the method of Chapter 4, perfect tracking after preactuation is
guaranteed by regenerating the state trajectory during preactuation, whereas this method guarantees
only after the end of the reference motion. The state trajectory during the reference motion is
optimized with respect to the control input and plant output constraints. A multirate feedforward
scheme, which is a stable inversion for unstable discretization zeros, is subsequently presented to obtain

a discretized control input that perfectly tracks the designed optimal continuous state trajectory.

5.1 Introduction

Model-inverse feedforward control is effective for reference tracking [20,30]. It is well known that
when the sensors and actuators are non-collocated, the plant zero(s) of continuous time can be unstable
[131]. System with continuous-time unstable zeros are, for instance, scanning stages [1,83], hard disk

drives [53], boost converters [54]. In discrete-time domain, there are two types of zeros: 1) intrinsic
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zeros proper to the plant dynamics and 2) discretization zeros due to signal sampling [117]. Note that
discretization zeros are unstable when the relative order of the continuous time plant is greater than
two, even without continuous-time unstable zeros [55].

The preactuation perfect tracking control (PPTC) method proposed in Chapter 2 solves problems
1) and 2) separately. Continuous-time unstable zeros are stably inverted by preactuation and dis-
cretization zeros are also stably inverted by a multirate feedforward technique [103]. To make exact
inverse, we need infinity time preactuation [72,118], which is infeasible. When the preactuation time is
sufficiently long compared to the time constant of unstable zeros 7, the truncation effect is negligible.
However, when the truncate all the preactuation, the significant tracking error arises (see t,, = 0 in
Figs. 3.6 and 3.7).

PPTC method consists of two steps: i) the desired state trajectory x;(t) generation from the
reference trajectory with its derivatives r(t), and ii) the feedforward input w,[i] generation from
x4[i + 1] by the multirate feedforward [103]. When the system has unstable zeros in the continuous-
time domain, step i) requires non-causal filtering. Step ii) can generate the the feedforward input w, 7]
from arbitrary state trajectory aq[i].

This Chapter modifies step i) to regenerate the state trajectory during the step motion, taking into
account constraints. Constraints include maximum/minimum feedforward input and the amount of
undershoot. The effectiveness is shown by simulation using a scanning stage model, whose dominant
zero is unstable.

This method is an extension of the method proposed in Chapter 4. In the method of Chapter
4, perfect tracking after preactuation is guaranteed by regenerating the state trajectory during pre-
actuation, whereas this method guarantees only after the end of the reference motion. The state
trajectory during the reference motion is optimized with respect to the control input and plant output
constraints. References [134,135] deal with similar scenario considering constraints. These methods
are continuous-time approach for nonlinear systems. In contrast, the proposed method designs the

exact inverse of the zero-order-hold (see Section 2.6.6).

5.2 Optimal state trajectory generation for multirate feedforward

The same notation shown in section 2.2 is used.

5.2.1 Original state trajectory x,; generation

First, the state trajectory for PPTC, which requires the infinity preactuation, is calculated by the

method shown in 2.4.1. When the system has unstable zeros in the continuous-time domain, x4(t) is
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Figure 5.1 Idea of the optimal state trajectory regeneration without preactuation. In contrast
to the FPPTC method shown in Fig. 3.8, this method regenerates the state trajectory for a finite
time 0 < t < tiraj. E4a(t) is calculated from Z14(t) by (3.4).

non-zero for ¢t < 0, assuming 7(¢) = 0 when ¢ < 0. This is because the unstable part state trajectory
x5 (t) has a non-zero value in ¢ < 0. Hence, to achieve perfect tracking, nonminimum phase systems

require infinite preactuation [125].

5.2.2 State trajectory re-generation

This section regenerates the state trajectory from a given ¢ = 0 to ¢ = t;a; to achieve the optimal
performance without preactuation as shown in Fig. 5.1. t,; denotes the given reference trajectory

end time. We regenerate the state trajectory as follows:

0 (t <0)
zi(t) = Ta(t) (0 <t < biraj) 5 (5.1)
o (1) (toaj < 1)

where Z4(t) denotes the regenerated state trajectory. Note that x**(¢) = 0 when tya5 < t.

Problem setting

Two constrained optimization problems are proposed for the state reference regeneration.

e Minimum tracking error
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A semi-infinite optimization for preactuation tracking error is formalized here as

minimize lea(@)ll, = [Ir(t) —ya(@)ll,, p=1,200 (52)
Subject to i‘d(O) = 07 id(ttraj) = "L'd(ttraj) (53)
Vi S [Oyttraj}

Ymin S y[k] S Ymazx, Umin S ’LLUC] S Umaz (54)

The tracking error eq(t) is minimized over 0 < ¢ < ti,,; taking into account both the physical
constraints of the stage, e.g. stroke ¥Ymin, Ymaez and actuator, e.g. peak current Umin, Umaz-
Although this method abandons perfect tracking over 0 < ¢ < ti,j, it guarantees perfect
tracking during postactuation (tiaj < t) by constraining that the re-generated state trajectory
Z4(t) at t = tiaj matches the desired state trajectory xq(t) calculated using (2.34).

Despite the good tracking achieved through this formulation, the resulting constrained feedfor-
ward output is impeded by a high jerk.

e Minimum jerk input

A second semi-infinite optimization problem for preactuation feedforward input is formalized

here as
e - 55
mininrize e | (5.5)
subject to  Z4(0) =0, Zy(turaj) = Taltiraj) (5.6)
Vvt € [O7ttraj}

€min S ed[k;] S €mazx Umin S U[k’] S Umazx (57)

Ureq is the control input during the finite preactuation obtained by (5.10).
The objective of this setting is to balance the control performance (i.e. maximum error) and

the smoothness of the control input.

Problem formulation

Eq. (5.2) and (5.5) are optimal control problems where one is interested in finding the input w,¢g
that brings the system from an initial state ;(0) = O to a final state x4(tuaj) at the end of the
trajectory and that minimizes a performance criterion (5.2) and (5.5) while obeying state and input
constraints. The difficulty of solving these states optimal control problem is the need for numerically
costly integration. Albeit, this is avoided in the multi-rate feedforward formulation used here, the

plant is realized through the controllable canonical form

T
Balt) = [F1alt) Falt) - Faalt)]

qu<t) = pq_ljld(t)7 q= 27 37 e, N, (58)
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(a) High-precision positioning stage. (b) 6th order model of Fig. 5.2(a).

Figure 5.2 Experimental high-precision positioning stage and its model [83,84].
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Figure 5.3 Pole-zero map of identified model shown in Fig. 5.2.

where Z14(t) is a piecewise polynomial defined in 0 < ¢t < ty,,5. The desired output yq(t) is, hence,

defined as a linear function of Z14(t)

yd(t) = Ccii}d<t) (5.9)

T
= Cc |T14(t)  pZralt) ... Pn_ljld(t)]

Hence, the desired output y4(t) can be evaluated by (5.2). To evaluate the control input during

preactuation in (5.5), the multirate feedforward control shown in (2.38) is applied.

5.2.3 Feedforward input u, generation from x4

The feedforward control input u, is obtained by the multirate feedforward control as Section 2.4.2.

uoli] = B~HI — 271 A)xyfi + 1], (5.10)

where z = e*T". The feedforward input u, achieves the perfect state matching for a4 every nT),.
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Figure 5.5 Comparison between ZPETC, ZMETC, and proposed method. |[|4ff||cc denotes
the condition defined in (5.5), which has equality constraints for the state variables and maxi-

mum/minimum control input.

5.3 Simulation
5.3.1 Plant model and simulation condition

Simulations of this chapter assume a experimental setup shown in Fig. 5.2. This stage can be
modeled by 6th order model shown in Fig. 5.2(b) and 5.3, which has two unstable zeros in continuous

time domain. Additionally, this model has a discretization unstable zero in P[z].

5.3.2 Parametrized B-spline implementation

Multirate feedforward is a sampled based approach, hence, the optimization function is limited to the
short sampling time 7. In order to guarantee constraint satisfaction in continuous time domain the
optimization problem is defined in terms of B-spline coefficients. The state vector Z4(t) (0 <t < tiyaj)

is defined as a B-spline of degree p > n [22] as

m

Fia(t) = > _p;BL(1) (5.11)

=0
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where p;, j = 0,...,m are the coefficient or control points. Let k = [KOy vy Kny,yop] DE a given knot
vector, extended to add flexibility to the optimization problem [133]. The j-th B-spline basis function
is chosen of degree m > n to guarantee n-order differentiable state trajectories.

The degree of the B-spline is set as 20 and the number of the free knots is set as 3.

5.4 Simulation results

The control input constraints are set as maximum/minimum current of the ZPETC method.

Fig. 5.4 compares the minimization of ||eq||1, ||€d||2, ||€d||co. The generated feedforward input shown
in Fig. 5.4(c) contains high-frequency contents.

To balance the control performance (i.e. maximum error) and the smoothness of the control input,
the derivatives of the control input is set as an objective function. ||dss||ec,ya denotes the condition
defined in (5.5), which has constraints for the state variables, maximum/minimum control input, and
the output y4. The proposed method achieves the smaller tracking error than ZPETC and smaller
undershoot than ZMETC.

5.5 Summary

This chapter proposes a optimal state trajectory generation method for nonminimum phase sys-
tems through an optimization approach explicitly considering both control input and tracking error
constraints. It regenerates the state trajectory from ¢ = 0 to t = ti;aj. Therefore, it optimize the
state trajectory during the main motion without preactuation. Previously proposed exact model-
inversion methods, achieve perfect tracking, in theory, for systems with unstable zeros, albeit at the
cost of an infinite preactuation. Input truncation or model approximation both lead to undesirable
tracking errors, hence, the authors propose an optimal control formulation to regenerate the state
trajectories during main motion while imposing system constraints. A multirate feedforward scheme
is subsequently presented to obtain a discretized control input that perfectly tracks the designed opti-
mal continuous state trajectory. In comparison to conventional single-rate model-inversion methods,
the proposed method achieves the smaller tracking error than ZPETC and smaller undershoot than

ZMETC in same time.
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Chapter 6

Multirate Feedforward Control based on
Modal Form

Abstract

Multirate feedforward control has been proposed to achieve perfect tracking for a plant with unsta-
ble discretization zeros. However, multirate feedforward control requires controllable canonical form
and inversion of a controllability matrix, both of which are known as numerically ill-conditioned.
This chapter proposes a multirate feedforward control method based on modal form to address these
problems. Moreover, the intersample behavior is improved compared to the conventional full order
multirate feedforward. The effectiveness of the proposed method is validated through simulation

results.

6.1 Introduction

Model-inverse feedforward control is effective for reference tracking [20,30]. Typically, controllers
are implemented in a discrete time domain [37]. Zeros in the discrete time domain are classified as 1)
intrinsic zeros proper to the plant dynamics and 2) discretization zeros due to signal sampling [117].
Note that discretization zeros are unstable when the relative order of the continuous time plant is
greater than two, even without continuous-time unstable zeros [55]. When a plant has unstable
zeros, perfect tracking defined in [59] is impossible by a single-rate control scheme because of the
unstable poles of its inversion system. Therefore, there has been extensive research into approximate
model-inverse feedforward control techniques such as the nonminimum-phase zeros ignore (NPZI)
method [30], zero-phase-error tracking controller (ZPETC) method [59], and zero-magnitude-error
tracking controller (ZMETC) method [119].

To address the unstable discretization zeros problem, we have proposed a multirate feedforward
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Figure 6.1 Multirate feedfoward based on modal form. S, H, and L denote a sampler, holder,
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T, =nTy.

control [103] to design stable inverse for unstable discretization zero(s) [55], which is generated by a
zero-order-hold. This method generates a feedforward control input, which enables the system to track
perfectly with the desired state trajectory for every nT),, where n and T, denote the nominal plant
order and the sampling period, respectively. Conventional multirate feedforward control has several
issues concerning a high-order plant: i) long time (nT,) for perfect tracking and ii) low numerical
stability due to inversion of controllability matrix with matrix size (n x n). The controllability matrix
is numerically ill-conditioned for a high-order plant [136].

Modeling accuracy is essential for the tracking performance for the model-based methods. It is well
known that time nT,, is needed to achieve zero-error at sampling points for a minimum-time dead-beat
control [37]. The same restriction exists in a multirate feedforward control [103]. This means that a
higher order plant requires a longer time to achieve perfect tracking for state variables.

The proposal of this chapter, multirate feedforward based on modal form, consists of the following

steps.

1. State trajectory generation by controllable canonical form
2. Similarity transformation to modal form

Modes are separated by every second order to have real coefficients.
3. Mode extraction

4. Multirate feedforward control for extracted second order mode

Using this procedure, the proposed method has the following advantages regardless of the plant order

n:

e Perfect state matching for arbitrary two states for every two samples (27,)
Intersample tracking error is reduced compared to the conventional full order multirate feedfor-

ward.
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e Controllability matrix with size of (2 x 2) for multirate feedforward

6.2 Multirate feedforward based on modal form

Block diagram of the proposed method is shown in Fig. 6.1.

6.2.1 Plant definition

A nominal plant in a continuous time domain is defined as

(p (s) = B(s) b+ b—18™ L+ -+ by
T AG) T st apisml -t ag
s+ ay,— sl q
A6 = 1 bo : ’ (6.1)
b S™ 4 byy_18™ L4 -+ by
B(S) = bo

where (6.1) is an irreducible fraction.

6.2.2 State trajectory ®...¢(t) generation by controllable canonical form

The state and output equations of (6.1) realized by the controllable canonical form are

dzccf(t) - Ac:ccfwccf(t) + bc:ccfu(t)7 3/(75) - Cc:ccfwccf(t)7 (62)
where
Eol (0 1 0 - 0 |
Z2cet (1) 0 0 | 0
Lecf = ) 7Aczccf =
(6.3)
| Tt () | | —ao —a1 —az -+ —ap_1]|
T
bc:ccf = |:0 o -- bo
Coocof = [1 % Z;TZL 0 --- 0

The subscript ‘ccf’ means the controllable canonical form realization. n and m (< n) denote the orders
of A(s) and B(s), respectively. The discretized plant by a zero-order hold with sampling time T}, is
defined as

mccf[k + 1] = As:ccfmccf[k] + bs:ccfu[k]y
y[k] = CS:CwaCCf[k]a
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where
A T A
- seef Tu - ‘cef T -
As:ccf = et et ; bs:ccf = / e heeet bc:ccfd7—7 Cs:cef = Ce:ccf- (65)
0

According to the output equation shown in (6.2), the desired state trajectory @q.cct(t) by the con-

trollable canonical form realization should satisfy
T(t) - Cc:ccfxd:ccf(t) (66)

to track the plant output y(¢) for the reference r(t). (6.6) is expressed as

xl:ccf(t)
pxlzccf(t)
T‘(t) =1 oy .. bm o --- 0 p2x1:ccf(t) (67)

n

LP 71x1:ccf(t)_
considering the controllable canonical form realization (6.3), where p denotes the Heaviside operator

[37]. From (6.1) and (6.7), 1.cc£(t) is obtained by

xl:ccf<t) = 57 N

Therefore, whole vector @g...¢(t) is obtained by

Taseet (t) = sz)r@e), (6.9)

where 7(t) denotes the reference trajectory and its derivatives:

P = [ @) ]

(6.10)
= [1 p - p"_l} r(t). o

Equation (6.9) is calculated by following convolution

wd:ccf(t) = /_too f(t - T)T(T)dT
—/0 ft—71)r(r)dr (6.11)

assuming r(t) = 0 when ¢t < 0. Here f(t) = £L7! [ B%s)}, where £71 denotes the inverse of one-sided

Laplace transform.
When the continuous time plant has unstable zeros, a stable inversion technique (see Chapter 2) is

used to obtain a bounded state trajectory.
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6.2.3 Similarity transformation to modal form

The plant defined in (6.1) is decomposed by second-order modes.

Ny —1
< bm 15+bm 0

P, = g & & O 6.12
e(s) 8%+ Amy 18 + Amy 0 00, (6.12)

mg=1
where mg and n,, denote mode number and number of modes, respectively. Here we assume the
maximum pole multiplicity is two since a mechanical system is considered. Note that b,,, 1, bm,,0,
Am,.1, and G, o are real numbers for all my. When n is an even number, n,, = n/2 otherwise

Ny = (n+1)/2.

bn
O(s) = —2=% _ (if n is an odd number)

§ 4 0.0 (6.13)

bn 15+ bn 0 .
=5 L= (if n is an even number)
§* + anp,, 1S + an,, 0

(6.14) is realized by the modal form from (6.12). Each mode is realized by the second-order controllable

canonical form.

:i}mf (t) = Ac:mfwmf (t) + bc:mfu(t)a

(6.14)
y(t) = Cc:mfwmf(t)a
where
( T
mmf(t) = |:x1:mf(t) $2:mf(t) T xn:mf(t)
Ac:mf = dia'g{Ac:mf,la Ac:mf,27 T 7Ac:mf,md7 e Ac:mf,nm}
T T T T
bCImf = [bc:mf,lﬂ bc:mf,?? e 7bc:mf,md7 e 7bc:mf,nm]
Cemf = [Cc:mf,ly Ce:mf,2," " s Cemf,mgy " " ° 7Cc:mf,nm] (615)
0 1 0
Ac:mf,md = 7bc:mf,md =
_amd,o _amd,l bmd,o
bing 1
Ce:mf,mg = |:]- l;’”m:|
md,O

The subscript ‘mf” means the modal form realization. The transformation matrix to the controllable

canonical form [37] is

T=UW, (6.16)
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where
_ .
UC = bc:mf Ac:mfbc:mf Agbmf )bc:mf (617)
ay Ap—1 1
W = (6.18)
Ap—1 1
1 (0
From the above, the state trajectory by the modal form @ 4..,¢(¢) is obtained by
wd;mf(t) = TIBd;CCf(t). (619)
ZTamt(t) satisfies
r(t) = ComtTame(t), (6.20)

because Ce.cct = Ceme T [37].
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Figure 6.4 Bode diagram of (6.30)

6.2.4 Feedforward control input generation

Owing to the modal form realization shown in (6.14) and (6.15), there is no coupling between modes.
Therefore, arbitrarily chosen jth mode consideration is sufficient to generate feedforward control input.

As an example, the desired state trajectory of the first mode is extracted as (6.21) by (6.22)

xld:mf(t)
= Mlmd;mf(t) (6.21)

xQd:mf(t)
My = |12 O@n-2; (6.22)

where O and I denote the empty and identity matrix, respectively. The subscripts denote the sizes
of the matrices.

The state equation for the first mode is

jj'l:mf(t) xl:mf(t)
. = Ac:mf71 + bc:mf,lu(t)- (623)
:me (1) T2:me (F)

(6.23) is discretized by sampling period T, and (6.24) is obtained.

T1:mf [k] xl:mf[k]
. = As:mf,l + bs:mf,lu[k]a (624)
T2:mf [k] x2:mf[k]

where

Ty
As:mf = eAC:meu, bs:mf = / eAC:mebc:mde' (625)
0
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The multirate system with input multiplicity two of (6.24) is

il:mf[i + ]-] xlimf[i] .
. ) == Amrﬁ:mf,l . + erﬁ:mf,lu[l]a (626)
$2:mf[2 + 1] $2:mf[z]
where
Amrff:mf,l = Ag;mf,p erff:mf,l = As:mf,lbs:mf,l bs:mf,l] 9
xli] := x(i2T,,). (6.27)

(6.26) is obtained by calculating the state transition from ¢ = iT,. = kT, tot = (i + 1)T,, = (k +2)T,.
Here, the input vector u,[i] is defined in the lifting form

w,li] = [ul [i] g [’i]} : (6.28)

T
= [u(szu) u((k + 1)Tu)} .
According to (6.26), the feedforward input w,[i] is obtained from the previewed state trajectory

Tamt|i + 1] as follows:

. 1 1 T1d:mf ['L + ]-]
U, [Z] = erﬁ”:mf,l(I —Zz Ann«ﬁ‘:mf’l) [ N 1] y (629)
L2d:mf [t

where z denotes e*2Tu. The feedforward input u,[i] enables us to achieve the perfect state matching
for every 2T, for the selected modes. Note that this method does not ensure the perfect state matching
for the rest modes, however, it can achieve reasonable tracking because the desired state trajectory
is generated considering the other modes in (6.19). The short period of the state matching for the
selected modes contributes the smaller intersample tracking error compared to the conventional full

order multirate feedforward [103], which ensures the full state matching for every nT,.

6.3 Simulation
6.3.1 Plant definition

In the following, the forth-order plant is considered. A Bode diagram is illustrated in Fig. 6.4.

3.5321(s% + 8.142s + 2.518 x 10%)
s(s +2.101)(s2 + 10.89s + 3.665 x 104)
3.532s2 + 28.765 + 8.894 x 10*

= 6.30
st 4 12.99s3 + 3.667 x 10%s% + 7.699 x 10%s ( )

Pe(s) =
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6.3.2 State trajectory x4...¢(t) generation by controllable canonical form

(6.30) is realized by the controllable canonical form:

0 1 0 0
' 0 0 1 0
a’ccf(t) = ‘T‘CCf(t>+
0 0 0 1
0 —7.699 x 101 —3.667 x 101 —12.99]
- 0 -
0
u(t)
0
|8.894 x 10|
=AcccefToct (t) + bc:ccfu<t> (631)

y:[l 0.0003233 3.971 x 1075 0| cet(t)
—Cect oot (). (6.32)

The state trajectory xq.c.¢(t) is generated by 6.2.2 and Fig. 6.2 is obtained.

6.3.3 Similarity transformation to the modal form

(6.33) is obtained from (6.30).

Pe(s) = P1e(s) + Pac(s) (6.33)
Pl = 2T 630
Py.(s) := 1105 (6.35)

s2 4 10.89s + 3.665 x 104
(6.33) is realized by the modal form:

:bmf(t) — Ac:mfmmf(t) + bc:mfu(t)a

Y(t) = ComtTme(t), (6.36)
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where
_Ac:mf,l (0]
Ac:mf = )
(0 Ac:mf,2
0 1 0 1
Ac:mf,l = 7Ac:mf,2 = )
0 —2.101 —3.665 x 10*  —10.89
bc:mf,l
beme == y Ce:mf = [Cc:mf,l Cc:mf,Q}
_bc:mf,Q
r T T
bemtr == |0 2.427} bt = [0 1.105}
Ce:mf,1 = _1 0:| y Ccimf,2 = |:1 01| . (637)
U. and W in (6.16) are
Uc = [bc:mf Ac:mfbc:mf Ai;mfbc:mf Ag;mfbc:mf] (638)
76993 36673 13 1]
36673 13 1 0
W (6.39)
13 1 0 0
1 0 0 0

The state trajectory @g.m,¢(t) obtained by (6.19) is shown in Fig. 6.3.

6.3.4 Feedforward control input generation

We discretize the first mode (6.34) by sampling period T,, = 400 us and the multirate feedforward

(6.29) in the second order is obtained as

Amrff:mf,l :

erff:mf,l =

(1.00 7.99 x 104
0 0.998

(582 x 10-7 1.94 x 107

9.69 x 10°% 9.70 x 10~*

6.3.5 Simulation results

(6.40)

We compare the three methods for the simulation for the fourth order plant shown in Fig. 6.4 and

(6.30). Simulation results are shown in Fig. 6.5 and Tab. 6.1. The proposed method (‘MRFF(MF)’)

achieves smaller intersample error and on sample error (every Ty,).

Tab. 6.2 shows the condition

number of the discrete controllability matrix. The inversion of it is needed for the multirate feedforward

calculation in (6.29) and (6.42). The full order multirate feedforward (‘MRFF(CCF)’) have a high-
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Figure 6.5 Simulation results. Note that grids of (c) are every 2T,. Dots are illustrated for
every T,. (c) shows that the proposed method has less intersampling error.

condition number. It is assumed that condition number will be much worse with a higher order
nominal plant. The proposed method based on the modal form can keep the condition number low

and it is numerically more reliable.

Second order approximated multirate feedforward

This method approximates the nominal plant as the second order Pj.(s) in (6.34) and the approx-
imated model is used for multirate feedforward [103]. ‘MRFF(2ndApprox)’ in Fig. 6.5 indicates this
method. The state and output equations are

0 1 0

i (t) 2 (t) + u(t), y(t) = [1 o] (1), (6.41)

0 -2.101 2.427

Note that the equation for multirate feedforward shown in (6.29) is as same as the proposed method
based on modal form (6.40). However, the given state trajectory by (6.7) is x(t) = [r(t) pr(t)]T and

it is different from the proposed method because the proposed method generates the desired state



6.3. Simulation

x10*
20 3000
2000
15
1000
by = T
S10 8 S0
-1000
5
-2000
0 . -3000
0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Time [s] Time [s] Time [s] Time [s]
(a') Z1d:ccf- (b) ZT2d:ccf - (C) X3d:ccf - (d) T4d:ccf -
12 5
2><10 1><10'8 6><10 08
—MRFF(CCF) : — MRFF(CCF)
4 06
1 05
5 5 = 2 5 04
g ] g g
<0 2o <0 ¢ 02
g g g, gy
-1 -0.5
_4 | [=MRFF(CCF) o2
——MRFF(CCF) V
-2 -1 -6 -04
112 12 128 136 144 152 16 11.2 12 128 136 144 152 16 1.2 12 128 136 144 152 16 11.2 12 128 136 144 152 16
Time [s] Time |[s] Time [s] Time [s]

(e) T1d:ccf €TrOr.

(f) Z2d:ccf €ITOr.

(g) Z3d:ccf €rror.

(h) T4d:ccf €TTOr.

Figure 6.6 Simulation results of the full order multirate feedforward [103]. Dots are illustrated

for every T.,. The perfect state matching for every 4T, is achieved and the output error r(t) —y(t)
is exactly zero for every 47T,.
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Figure 6.7 Simulation results of the proposed multirate feedforward based on modal form. Dots
are illustrated for every T,. From (a) to (d), a good state tracking is achieved. (e) and (f) shows
that the state matching for x14:ms and z2q.my is achieved for every 27),. Perfect state matching
is not achieved for x34.mf and aq.my (it’s clear on (g)). Although the state mismatch on sample

contributes the output error r(t) — y(¢), Fig. 6.5 shows that it is negligibly small on sample and
the benefit on small intersample error remains.

(h) z4d:ms error.
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Table 6.1 Maximum tracking error for Fig. 6.5

‘ Sampling points (every T,,) Sampling points (every 4T,)* Intersample

MRFF (2ndApprox) 208 pm 208 pm 208 pm
MRFF(CCF) 0.937 nm 1.88 x 10~* nm 331 nm
MRFF (MF) 0.299 nm 7.03 x 1072 nm 214 nm

¥ T, = nT, = 4T, for MRFF(CFF).

Table 6.2 Condition number of the controllability matrix

‘ Condition number

MRFF (2ndApprox) 5.00 x 103
MRFF(CCF) 1.36 x 101!
MRFF(MF) 5.00 x 10°

trajectory considering the other modes by (6.19).
Fig. 6.5(a) shows that this method cannot track the reference r(t) at all because the state trajectory

is generated ignoring the resonance mode Py.(s).

Full order multirate feedforward
This method used the full order model (6.30) for the multirate feedforward [103]. ‘MRFF(CCF)’ in
Fig. 6.5 indicates this method.

U’O[i] = B;u%ff:ccf(I - zilAmrff:ccf)md:ccf ['L + 1]7 (642)
Aptrecer = AL s, x[i] := x(i4T,) (6.43)
Boficet := [Ag:ccbe:CCf A?:ccfbs:ccf Agcetbsicet bsicet (644)

Fig. 6.5(c) indicates that the perfect tracking is achieved for every 4T, because the order of multirate
feedforward is four. Fig. 6.6 shows that the perfect state matching for all the states for every 47, is

achieved.

Multirate feedforward based on modal form

The procedure shown in Section 6.3.2-6.3.4 is applied. ‘MRFF(CCF)’ in Fig. 6.5 indicates this
method.

Fig. 6.5(b) shows that the intersample tracking error is smaller than the conventional full order
multirate feedforward. Fig. 6.7(e) and 6.7(f) show that the perfect state matching is achieved for
every 2T, and good state tracking is achieved the rest states (Fig. 6.7(c) and 6.7(d)). Although Fig.
6.7(g) and 6.7(h) show that the perfect state matching is not achieved for every 27, Fig. 6.5(c) shows

that the effect to the output error r(t) — y(t) is negligibly small on sample and the benefit on small
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intersample error remains.

6.4 Conclusion

Multirate feedforward has been proposed to design stable inversion for a plant with unstable dis-
cretization zeros. However, the multirate feedforward control method based on the controllable canon-
ical form has several issues for a high-order plant: i) long time (nT,,) for perfect tracking and ii) low
numerical stability due to inversion of controllability matrix with matrix size (n x n).

This chapter proposes a multirate feedforward control method based on the modal form to relax
their problems. The proposed method has the following four steps: 1) state trajectory generation by
controllable canonical form, 2) similarity transformation to modal form, 3) mode extraction, and 4)
multirate feedforward control for the extracted second-order mode. The proposed method has the
following advantages regardless of the plant order: i) perfect state matching for the selected mode for
every 2T, and ii) size of the controllability matrix for multirate feedforward. The simulation results
validate these advantages and show better intersample error owing to the shorter period for the state

matching.
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Chapter 7

Trajectory Tracking Control for
Pneumatically Actuated Scan Stage with

Time Delay Compensation

Abstract

A pneumatic actuator has several advantages such as low heat generation, high weight /power ratio,
and low cost. However, it has several disadvantages such as time delays and nonlinearities. Because
pressure and position feedback band- widths are limited by time delay, it is difficult to implement a
pneumatic actuator for a scan stage. To enable this, this chapter proposes to use a modified Smith
predictor and implements it for an experimental scan stage. The effectiveness of the proposed control

system is validated by frequency and time domain characterization experiments.

7.1 Introduction

High-precision stages are important machinery in the semiconductor and flat panel display man-
ufacturing processes [1,85]. To achieve high integration and reduce the cost of manufacturing for
electronic devices, faster and more precise positioning by larger stages are required. High speed posi-
tioning requires more massive actuators, increasing the moving mass combined with the larger stage.
As a result, the heat generated by electromagnetic actuators is increased. Heat is a serious concern
because it affects not only the proprieties of the mechanical system but also those of the actuation
and measurement systems [82,97]. Another problem accompanying a larger and more massive stage
is reduced resonant frequencies. Due to this problem, it is difficult to design a high bandwidth feed-
back controller. Hence, conventional scan stages inherently face a trade-off between throughput and

positioning accuracy [43].
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Air bearing

/
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(b) Side view.

Figure 7.1 Schematics of the pneumatic actuated scan stage.

To relax the trade-off, a contactless dual stage structure which has a short stroke fine stage and a
long stroke coarse stage is commonly used [2,79]. This structure allows a slightly lighter fine stage and
reduces disturbance from the coarse stage. However, the weight reduction of the ne stage is limited by
the required maximum acceleration of the fine stage actuator determined by the setpoint trajectory.
To address this issue, our group has proposed a catapult stage [34,95,96] which allows both contact
and separation between the fine and coarse stages. The fine stage of the catapult stage is lighter and
simpler compared to the conventional dual stage because the fine stage actuation is not necessary in
the acceleration and deceleration regions in the scanning motion.

This chapter considers replacing the linear motor in the coarse stage with a pneumatic actuator
for a lighter and simpler stage. This pneumatically-actuated coarse stage can be used in the catapult
configuration to create a new-generation lightweight dual stage that generates little heat and demon-

strates high positioning accuracy. A pneumatic actuator has advantages compared to a linear motor:
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(a) Oblique view. (b) Side view.
Figure 7.2 Photograph of the pneumatic actuated scan stage.

X
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1 1 | @) O |
my 4 4 m,

Figure 7.3 Model of the pneumatic actuated scan stage.

1) low heat generation [97], 2) high power-weight ratio [98], and 3) low cost [98]. Disadvantages in-
clude 1) time delay [99] and 2) nonlinear dynamics [100,101] due to air dynamics and servo valves.
Because of these disadvantages, pneumatic actuators are not commonly used in precision motion con-
trol applications [102]. This chapter focuses on the time delay problem which limits feedback control
bandwidth. Various methods have been studied to address time delay: 1) Smith predictor [137] and
its modifications [138,139], 2) Internal Model Control (IMC) [140], and 3) communication disturbance
observer [88]. This chapter applies a modied Smith predictor to a trajectory tracking control problem.

Control methods for pneumatic actuators have been studied [141] including PID control [142], it-
erative learning control [143], and sliding mode control [144]. The control system proposed in this
chapter has an inner pressure feedback loop with a modified Smith predictor for each chamber, and
an outer position feedback loop. Each inner loop also has a pressure-derivative feedforward calculated

by a jerk reference of the stage to improve pressure tracking control performance.
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Figure 7.4 Step response of the chamber 1. There is a delay from ugef to Pim.
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Figure 7.5 Block diagram of the Smith predictor.

7.2 Experimental setup

Schematics and photographs of our experimental setup are shown in Figs. 7.1 and 7.2. This stage is
designed as a miniaturized single axis () coarse stage actuated by a pneumatic cylinder. The coarse
stage is supported by air pads to reduce friction. As illustrated in Fig. 7.3, the cylinder has two
chambers. Each chamber has a pressure sensor, a high-pressure poppet valve and an ambient poppet
valve. The supply air of the high-pressure side is 4 x 10° Pa. The position of the stage is measured by
a linear encoder.

One of the problems of this pneumatically actuated stage is time delay. Fig. 7.4 shows a step
response from a valve voltage reference to the measured pressure in Chamber 1. There is a delay of
about 10 ms. This delay is not negligible to achieve high feedback bandwidths for the pressure and

position feedback loops.
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Figure 7.6 Block diagram of the modified Smith predictor.

7.3 Time delay compensation by modified Smith predictor

7.3.1 Smith predictor

This subsection introduces the Smith predictor [137]. Here, a plant with input delay P(s)e™"* is
assumed. Without the Smith predictor, the tracking control performance is

Js) _ Ce)Pl)e
r(s) 1+ C(s)P(s)e 7’

(7.1)

The denominator of (7.1) has a delay element undermining feedback stability. With the Smith pre-

dictor shown in Fig. 7.5, the tracking control performance becomes

y(s) _ C(s)P(s)e™™
r(s) 1+ C(s)P(s)

(7.2)

when P, (s) = P(s) and 7,, = 7. Because the denominator of (7.2) does not have a delay element, the

feedback controller C'(s) can be designed as a system without delay.

7.3.2 Modified Smith predictor and its analysis

The Smith predictor cannot be used for an unstable system or an integrating system with a constant
disturbance [139]. To address this issue, this chapter proposes a modied Smith predictor with a high
pass lter (HPF) illustrated in Fig. 7.6 for the integrating system. Fig. 7.6 has three tuning parameters:
a cut off frequency of the HPF ¢, a gain K, and a nominal delay 7,,. Nyquist diagrams calculated from
a measured frequency response of the pressure feedback control are shown in Fig. 7.7. Proportional

integral (PI) controller with 14 Hz nominal bandwidth is used for the pressure feedback.
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Figure 7.7 Nyquist diagram of the pressure control.

7.4 Modeling

The model of the pneumatically actuated stage is illustrated in Fig. 7.3. A block diagram of the

overall control system is shown in Fig. 7.8. The ideal gas equation is

P,(t)Vi(t) = mi(t)RT; (7.3)

where P;, V;, m;, R, T; denotes chamber pressure, chamber volume, mass of the gas, ideal gas constant,
temperature for each chambers, respectively. Chamber temperature T; is assumed to be a constant.

Subscript ¢ represents the chamber number. By time differentiation of (7.3),

PAOVAL) + PAOVi(t) = i (6)RT, (7.4)
is obtained. From (7.4), P; is modeled as
Pit) = —P,(t)Vi(t) + 1ini (1) RT; (7.5)

Vi(t)
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Nonlinear model NL from valve commands w; jn, Ui out t0 1; shown in Fig. 7.8 is obtained by poly-
nomial fitting of experimental data [100, 145].
Equation of motion of the stage is
f(t)y=Pi(t)A— Py(t)A

7.6
= Mi(t), (7.6)
where f, A, M, and x denotes force from the pneumatic cylinder, pressurized area, mass of the stage,

and position of the stage, respectively.

7.5 Control system of the pneumatically actuated stage

The control system of the pneumatic actuation stage is shown in Fig. 7.8. As an inner loop, a pressure
feedback is implemented for each chamber. As an outer loop, a position feedback is implemented for

stage position by using a linear encoder.

7.5.1 Position control

C’}Cb(s) is implemented as an outer loop position feedback controller. The relationship between the

output of position feedback f¢/ and pressure commands P, ef Py /s

fred(t) fed(t)

Pl (t) = Pt

Pyl = P

(7.7)

where P*¢* denotes the set pressure for each chamber. In this case, P*¢! is set as 2.0 x 10° Pa. C’fb(s)

is designed by a series connection of a PI controller, a phase lead filter, and notch filters.

7.5.2 Pressure control

Pressure feedback controllers C' ]1;17 C’fbe are designed as a series connection of a PI controller, a phase
lead filter, and notch filters.

The reference of the derivative of the gas mass is obtained as follows:

P @Vile) + POVi()

Inverse model NL~! from m;ef to u:%, u:eoj;t is calculated by the inverse of the polynomial obtained
in section 7.4.
Feedforward commands P{efj}, P;e}]} are obtained by the differentiations of (7.6) and (7.7):
: Miref(t) . Mimet (t)
ref _ ref —
Pyy(t) = To4 P2,ff(t)__T’ (7.9)
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7.6 Experimental results
7.6.1 Pressure feedback

We performed experiments in three cases: Casel (Conv), Case2 (Prop) and Case3 (Prop2). The
conditions are listed in Tab. 7.1 and 7.2. The experiments are performed by the block diagrams shown
in Fig. 7.8 and Fig. 7.9, respectively. Pressure feedback control performance is shown in Fig. 7.10 and
Tab. 7.1. In Case 1 (Conv), Cﬁl, C’ﬁf are designed to have about 35 degree phase margin without the
modified Smith predictor. In Case 2 (Prop), C}Dbl, Cﬁf are redesigned to have about phase margin of
35 degrees with the modified Smith predictor. The parameters of the modified Smith predictor are
set as 7, = 10ms, K; = 0.3, K3 = 0.4, and ¢ = 1 x 2w rad/s.

Fig. 7.10 shows a frequency response from the force command for the pneumatic cylinder f7¢f to

estimated force generated by the pneumatic cylinder f . f?i(fjal)

is calculated by

fiw) _ PL(jw)A— Py(jew)A
Fref (j) frerGw)

(7.10)

In Tab. 7.1, the bandwidth is defined as the —90 degree crossover of ffe(}(“;zu) From Fig. 7.10 and Tab.

7.1, the pressure feedback bandwidth is improved from 9.4 Hz to 31 Hz regardless of similar phase

margin.

7.6.2 Position feedback

Frequency response of the position feedback is shown in Fig. 7.11 and Tab. 7.2. In Case 1 (Conv),
the phase margin of position feedback is 22 degree. In Case 2 (Prop), the phase margin of position
feedback is 53 degree because the inner loop pressure feedback is improved. In Case 3 (Prop2), the
outer loop position feedback controller C’;?b is redesigned. The position feedback bandwidth is improved
from 5.3 Hz to 11 Hz although the gain and phase margins increase.

Time responses are shown in Fig. 7.12. In this experiment, a scan trajectory is given as a reference
shown in Fig. 7.12(a). Tracking performances are shown in Fig. 7.12(d) and Tab. 7.3. In Case 3
(Prop2), the maximum tracking error is improved from 507.7 pym to 135.3 um because of its high

bandwidth feedback controller.

7.7  Summary

This chapter investigated a pneumatic actuator for a scan stage to replace a linear motor. A

pneumatic actuator has advantages such as low heat generation, high power-weight ratio, and low
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the modified Smith predictor, the
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feedback bandwidth is improved as listed in Tab. 7.1.

calculated by (7.10). By applying

Table 7.1 Pressure feedback control performance by Fig. 7.10.

Casel (Conv) Case2 (Prop)

Pressure FB

Gain margin

low gain high gain + MSP*
13dB (32Hz)  6.4dB (62Hz)

Phase margin  35deg (6.9Hz) 35deg (27Hz)

Bandwidth

9.4Hz 31Hz

*Modified Smith predictor

Table 7.2 Position feedback control performance by Fig. 7.11.

Casel (Conv)  Case2 (Prop) Case3 (Prop2)
Pressure FB low gain high gain + MSP* same as case 2
Position FB low gain same as case 1 high gain
Gain margin (Position FB)  7.0dB (9 Hz) 17 dB (30 Hz) 9.6 dB (30 Hz)
Phase margin (Position FB) 22deg (5.9 Hz) 53 deg (3.2 Hz) 26 deg (10 Hz)
Bandwidth (Position FB) 5.3 Hz 7.7Hz 11 Hz

*Modified Smith predictor
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as listed in Tab. 7.2.

Table 7.3 Scan motion experimental results by Fig. 7.12.

Casel (Conv) Case2 (Prop) Case3 (Prop2)
Maximum tracking error 508 pm 418 pm 135 pm
Standard deviation of the tracking error 114 pm 94.0 pm 19.5 pym

cost. On the other hand, it has disadvantages such as time delay and nonlinearity. Due to the time
delay problem, it is difficult to implement a high bandwidth feedback controller.

The proposed control system has a pressure feedback inner loop for each chamber and a position
feedback outer loop. The nominal plant of the inner loop is an integrator. The standard Smith
predictor cannot be used in a system with an integrator. Therefore, this chapter proposes a modified
Smith predictor and implements it for an experimental scan stage.

The proposed control system with the modified Smith predictor in the inner loops can achieve high
bandwidths for the inner loops and outer loop. The proposed method achieves maximum tracking
error 135 um and standard deviation of the tracking error 19.5 um. The results are considered as very
accurate because literature [113] states that the positioning accuracy of pneumatic actuated systems

is 100 — 500 pm at best.
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Figure 7.12 Scan motion experimental results. The tracking error is drastically reduced by the

proposed method (Case3).
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Chapter 8

Acoustic Wave Equation Based Modeling
and Collocated Side Vibration Cancellation

for Pneumatic Cylinder

Abstract

A pneumatic actuator has several advantages such as low heat generation, a high power-to-weight
ratio, and low costs; however, it also has disadvantages such as time delays, nonlinearities, and position-
dependent multiple pressure resonances. In this study, we propose a wave equation-based model, which
can fit the position-dependent pressure resonances based on delay elements, taking into account the
damping. Using this model, a wave cancellation filter is proposed for canceling all the resonances and

anti-resonances. The effectiveness of both the model and the filter were verified through experiments.

8.1 Introduction

A high-precision stage is an important type of apparatus used in semiconductor and flat panel
display manufacturing processes [1,85]. Faster and more precise positioning using a large stage is
required to achieve high integration and reduce the cost of manufacturing electronic devices [2, 3].
A dual stage structure with a short stroke fine stage and long stroke coarse stage is used widely to
satisfy these two requirements [1]. Linear motors or ball screws are normally used for the coarse
stages, but the electric motors become larger and heavier due to the high acceleration and larger stage
demands, thereby increasing the generation of heat [146]. Variations in temperature have severe effects
on the measurement system and lens apparatus [97,147], and thus precise temperature control [147]
is problematic.

The aim of the present study is to replace the linear motor/ball screw implemented in the coarse
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Figure 8.1 Pneumatically actuated stage.

stage with a pneumatic actuator. A pneumatic actuator has the following advantages compared with
a linear motor: 1) low heat generation [97]; 2) high power-to-weight ratio [98]; and 3) low cost [98];
but its disadvantages also include: 1) a time delay [99]; 2) nonlinear dynamics [100,101,148] due to air
dynamics and servo valves; and 3) position-dependent resonances. To address the time delay problem,
we previously proposed a modified Smith predictor and applied it to a pneumatically actuated scan
stage to achieve high-bandwidth pressure feedback [89]. However, both the delay and resonances limit
the pressure feedback bandwidth. The resonances are functions of the chamber length, valve position,
and pressure sensor position. Moreover, the resonances have multiple modes with a high peak in the
frequency domain.

In this study, we propose a modeling method for a pneumatic cylinder based on acoustic wave
equation. This model fits the frequency response with multiple resonances based on delay elements,
taking into account the damping effect of the system. We also propose a wave cancellation filter to
cancel multiple modes and shape it as a single integrator. This filter comprises delay elements and a
first-order filter.

Wave equation based modeling for valve-cylinder connecting tube with open-end condition is studied
in [148]. However, the damping term is ignored when the boundary condition is given. In contrast, we
make a model for a cylinder not for a tube with fixed-end condition and damping is considered not only

for modeling step but also plant shaping step for resonance cancellation. Vibration suppression control
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Ch1 Ch2

(a) Beginning of scan motion.

Ch1 Ch2

(b) Constant velocity region.

Ch1 Ch2

(c) End of scan motion.

Figure 8.2 Relationship between the stage position and chamber length during scan motion.
Chl and Ch2 denote the chamber 1 and 2, respectively.

for pneumatic vibration isolator is studied in [99]. This method suppresses only the first resonance
mode by relative velocity feedback

Wave equation-based resonance canceling has been proposed for elastic beams [149-152]. Unlike
the wave compensator proposed in previous studies [151,152], the proposed wave cancellation filter is
implemented between the plant and feedback controller in the same manner as notch filters. Moreover,
methods proposed in [151,152] do not consider the damping of the system. The damping considerations
for a model and a controller are important for a stability analysis in frequency domain. The proposed
method can model the damping of the resonances and anti-resonances separately.

Fig. 8.1 shows a pneumatically actuated stage. In a scanning motion, which is required in fabrication

processes for electronic devices, the chamber length is varied as shown in Fig. 8.2. To verify the position
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Figure 8.4 Plant model for a single chamber.

dependency, two simple closed chambers were prepared, as shown in Fig. 8.3. The two chambers had
lengths of 1.2 m and 2.2 m, respectively. The proposed model and control method were validated

through experiments.

8.2 Experimental setup

The experimental setups are shown in Fig. 8.3. This chamber had inlet and outlet poppet vales on
one end. The inlet valve was connected to a high-pressure source (400kPa) and the outlet valve was
connected to the ambient air. Pressure sensors were implemented on the valve side, the other side of
the chamber, and the middle of the chamber. Two chambers with different lengths were prepared to

investigate the chamber length and sensor position dependency.
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Table 8.1 List of symbols

Symbols  Definition Value Unit
p  density kg/m?
p  pressure Pa
v flow speed m/s
~  heat capacity ratio 1.402 -
¢o speed of sound m/s
R ideal gas constant 287.1 J/(kg-K)
T temperature (Kelvin) K

T  pressure sensor position m
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8.3 Modeling

Plant model for single chamber is shown in Fig. 8.4. NL denotes nonlinear dynamics of the valve and
air flow equation [97,153,154]. To compensate the nonlinearity by nonlinear inversion, the relationship
between the inlet and outlet valve voltages (u,), mass flow rate, and chamber pressure is modeled
by a polynomial [100]. Dead-zone compensation is also used for the valve nonlinearity between the
valve voltages (u,) and size of orifice areas. The frequency responses of the systems in Fig. 8.3 are
shown in Figs. 8.5 and 8.6 which both illustrate the chamber length dependency and sensor position

dependency, respectively.

8.3.1 Basic equations [155]

The variables are listed in Tab. 8.1. A one-dimensional wave, constant cross-sectional area, isentropic

change, and non-static flow are assumed. The basic equations are as follows.

e Equation of continuity

e Euler’s equation of motion

ov ov 10p

E—i-v%:—;% (82)
e Equation of isentropic change
P const (8.3)
pY
e Ideal gas low
p = pRT (8.4)

8.3.2 Acoustic wave equation [155]

A small perturbation is assumed as follows.

p=po+p, p=po+p, v=0+7 (8.5)
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By substituting (8.5) into (8.1) and (8.2), and ignoring the second order small terms, the following

equations are obtained.

op’ o’

a—’; +p05 =0 (8.6)
o' 10p

B + o0 D 0 (8.7)

The Taylor expansion of p is

_ 1 _ 2
p:p0+A<p p0)+B<'0'00> e (8.8)
p 2 p
where
0 0?
p P=pPo p P=po

(8.8) is approximated as

p’zp—po=A<p_pp0) = cgp. (8.10)

From (8.7) and (8.10), we obtain

o, Gow _

—_— . A1
at  pg Ox 0 (8.11)

From (8.6) and (8.11), the following wave equations are obtained.

o0 0%

82p/ an/
a2p/ azp/

8.3.3 Transfer function

/

From the following, ' is omitted for p’,v’,p’ in the small perturbation condition. The boundary

conditions are given by (8.15) by considering a fixed end condition [150] and a dimensional analysis,

Op(t, x) op(t, x)
2 ) )

= —u(t), 222 =0 8.15
CO 8x 0 u( )7 ax ol ) ( )
where the control input wu(t) is L &Pun(60) g;z(t’o). Puww(t,0) denotes the pressure wave created by the inlet

and outlet valves located at « = 0. The Laplace transform of (8.14) is

0?P(s,x)

2.2
P =
a“s“P(s,x) Fr

(8.16)
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Figure 8.7 Block diagram interpretation of (8.22).

where a denotes % From (8.15) and (8.16), we obtain

dP(s,0) dP(s, L)

2
= —a“U = 0. 8.17
0~ e, 2 (5.17)
The general solution is given by
P(s,x) = Crcosh(axs) + Casinh(axs). (8.18)

By partial differentiation of (8.18) with respect to x, the following equation is obtained.

OP(s, 1)

3 = C}sasinh(azs) + Cysacosh(azs) (8.19)
T

According to (8.19) and (8.17), integral constants are obtained by

a cosh(aLs)

Ci=—-—77—=
' s sinh(aLs)

U(s), Cy= —ZU(S). (8.20)

The transfer function from U(s) to P(s,z) is

P(s,z)  acosh(aLs)
U(s) T s sinh(aLs)

a cosh(aLs) cosh(axs) — sinh(aLs) sinh(axs)

s sinh(aLs)

a coshlas(L — )]

cosh(axs) — a sinh(azs)
s

= 8.21
s sinh(aLs) (8:21)
From the above, the acoustic wave system is derived.
P( ) L _zg _2L—xz s
S, x e 0" +e <
: == . (8.22)

Puw(s) Co 1 —6_38
Block diagram interpretation of (8.22) is shown in Fig. 8.7. According to (8.22), the transfer functions

from the valve input to the valve side end (z = 0) pressure and the other side end (x = L) pressure
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Table 8.2 Parameters for fitting and wave cancellation filter design.

Symbols  Definition Value Unit
co speed of sound 343.4  m/s
L chamber length 2.2 m
ki, ko damping coeflicient 0.92, 0.92 -
Tin  input delay 1.8 ms
(1, ¢ damping coefficient of the valve dynamics 0.70, 0.70 -
w1, we cutoff frequency of the valve dynamics 90, 170 Hz
are given as
P(s,0) Ll+4e =
Pwv(s) CO 1 —e 2(;%3 )
P(s,L) L 2%
Pwv (3) €o 1— 6_2”‘1;35

8.3.4 Modified acoustic wave equation considering damping

(8.23)

(8.24)

The model defined in (8.22) does not take into account the damping, so the gain becomes 0 at anti-

resonances and +oo at resonances. However, the measured frequency responses shown in Figs. 8.5 and

8.6 indicate that the system experiences damping. Thus, damping coefficients 0 < k1 < 1, 0 < ko < 1



110 Chapter 8. Wave cancellation filter for pneumatic cylinder

— 20 —
g g
o 40 o
=] =]
£ w0 E
& dat & dat
< [|[—data = — data
= % —— model = % —— model
-100 : -100 : :
10° 10t 107 10° 10t 107
0 0
= 90 = %0
15 1%
= =
o -180F o -180F
S E
= =
A~ 270F A 270F
-360 -360
10° 10t 107 10°
Frequency [Hz] Frequency [He]
(a) x = 0.10L. (b) £ = 0.56L.
20
g
- 40
=
£ -60
=
¥
= -80
-100
10°

10° 10 10?
Frequency [Hz]

(¢c) z =1.0L.
Figure 8.9 Fitted by (8.30) and Tab. 8.2.

are introduced to model this phenomenon.

P
Gunls,2) = D7)
Pyy(s)
— zs 2(L—x)s
2Lk sHRG e N(lbke o) (8.25)
= o 1+k2 s 1_k1€7201(,)5 .

The coefficients are determined to be a single integrator in a low frequency range, considering that
the measured frequency response shown in Figs. 8.5 and 8.6 well matches a single integrator blow 3

Hz. Note that

lim sGo (s, ) = 1. (8.26)

s—0
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The effect of damping is shown in Fig. 8.8. From (8.25), the valve side end (z = 0) and the other side
end (z = L) transfer functions are modeled by

2Ls

P(s,0) 2L ki S+ 55 14 ke w0

Guv(s,0) = = = — = 8.27
( ) Pwv(s) Co 1 + k‘2 S 1— k.le* COK ( )
171’»’1 C _Ls
Gunlsy ) = DB 2L b 2% R Tape U4 E) (8.28)
wv S, Pwv(s) co 1+ ko S 1— kle_chOs

8.3.5 Valve model

Poppet valves are used in this setup. The valve dynamics are modeled by a fourth order low pass
filter and input delay

G ( ) —Tin$ w% w% —TinS (8 29)
S 6 n — 6 n .
tpf 82 + 2 w18 + w? 52 + 2(owas + w3

Considering the valve dynamics, the transfer function from P"¢f(s) to pressure P(s,z) in Fig. 8.4
is obtained assuming perfect nonlinearity compensation.

P(s, )
Pref(s)

= Gwv(sax)Glpf(s)e_Tms (830)

The fitting results by (8.30) and parameters in Tab. 8.2 are shown in Fig. 8.9. The position-dependent

multiple resonances are modeled well by the single equation.

8.4 Proposed wave cancellation filter
8.4.1 Case ignoring damping

Figs. 8.5, 8.6, and (8.23) indicate that the plant model should have an integrator in a low frequency
range. By the first-order Taylor expansion of (8.23), we obtain (8.31).

_2Ls
P(s,0) Ll+e <o
- — 2Ls

Pref(s) €01 —¢ <o
1 L

12

Co

12

® | = » |

(8.31)

To cancel the all resonances and anti-resonances, the integrator and the rest are separated as follows

2Ls
P 1 Ls(1 T eo
P(s,0) _1Ls(lte ©) (8.32)
Pref(s) S ep(l—e @)
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The wave cancellation filter Cy,c¢ for (z = 0) is obtained by inversion of the resonant modes as follows

2Ls
co(l—e <o)

chf(S,O) = 3Ls_- (833)
Ls(1+e <o)

8.4.2 Case considering damping

The generalized wave cancellation filter is obtained using the same procedure employed in subsection

8.4.1 for (8.25) as follows.

2Ls

Co 1+]€2 1 l—kle_ €0

C’wa(87 x) - E k 1—ky <o _2(L_w)s (834)
1S+ 530 1+ koe” <0

The shaping result obtained by (8.34) is shown in Fig. 8.14. Fig. 8.14(a) indicates that the proposed
wave cancellation filter has gain peaks at the anti-resonances and gain attenuation at the resonances.
Fig. 8.14(b) shows shaping results by simulation using model expressed in (8.25), which indicates
that the anti-resonances and resonances are all canceled. Fig. 8.14(c) shows the simulation results
by the measured frequency response data shown in Fig. 8.9(a). The resonances and anti-resonances
are well canceled due to a good model matching. Fig. 8.14(d) shows the experimental results, which
indicate that —19 dB, —23 dB, and —16 dB gain attenuations are achieved for the first, second, and
third modes, respectively. This performance is not as good as the simulation results shown in Figs.
8.14(b) and 8.14(c). This difference may be due to the non-canceled nonlinearity of the valves and air

dynamics shown in Fig. 8.4.

8.4.3 Parameter dependency observations

Equations (8.25) and (8.34) have four parameters assuming the speed of sound is constant. Pa-
rameter dependencies are shown in Figs. 8.10-8.13. Fig. 8.10 indicates the wave cancellation filter
automatically changes the resonance and anti-resonance frequencies according to the chamber length
L. Fig. 8.11 shows that the frequencies for anti-resonance canceling of the wave cancellation fil-
ter Cyef(s, ) are automatically changed according to the pressure sensor position (z). Fig. 8.12(b)
and 8.13(b) show that k; and ko change the strength of the resonance and anti-resonance canceling,

respectively.

8.5 Experiments

A block diagram is shown in Fig. 8.15. A proportional-integral (PI) and phase-lead controller are

used for feedback. The pressure reference is the first-order delayed step. a denotes the pole of the
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1

low-pass filter used for trajectory generation. < is used as a nominal model of the pressure feedforward
controller.

The step response is shown in Fig. 8.16. The pressure vibration is canceled well with the wave
cancellation filter. Fig. 8.16(c) shows the frequency analysis of Fig. 8.16(b), where up to the fourth
mode is observed without the wave cancellation filter. This demonstrates that the proposed wave
cancellation filter attenuates multiple modes with a single filter. The pressure closed loop performance
is shown in Fig. 8.17. Without the wave cancellation filter C,.r, a higher bandwidth is difficult to
achieve due to the high-gain peak.

Fig. 8.18 shows the effect of the pressure feedforward. Wave cancellation filter is used in both cases.

1

The shaping of the plant by wave cancellation filter means that the simple model P,(s) =  can be

used for the nominal model as the feedforward controller.

8.6 Summary

High-bandwidth pressure control for a pneumatic cylinder is difficult because of position-dependent
multiple resonances and anti-resonances. In this study, we modeled these phenomena based on a
acoustic wave equation, taking into account the damping. It contains delay elements and it can fit
multiple modes. According to the proposed model, we proposed a wave cancellation filter to cancel
the multiple position-dependent modes. Theoretically, this filter can shape the position-dependent

plant as a single integrator. The effectiveness of the proposed method was verified by experiments.
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Chapter 9

Conclusion

In this dissertation, a framework of high-precision motion control method for nonminimum phase
systems was presented. Nonminimum phase systems are notoriously difficult to control from both sides
of feedback and feedforward. Nonminimum phase systems are classified as 1) systems with unstable
zeros and 2) systems with time delay.

In Part I, feedforward control methods for systems with unstable zeros are investigated. Feedforward
controller for reference tracking is commonly designed by the feedforward plant-injection (FFPI) or
feedforward closed-loop-injection (FFCLI) architectures. In both cases, the inversion system with
unstable zeros has unstable poles and it is infeasible to implement. The core idea of the Part I is to
compensate the unstable zeros separately, depending on the type of zeros. Zeros of discrete transfer
functions are classified as i) intrinsic zeros proper to the plant dynamics and ii) discretization zeros
due to signal sampling. The intrinsic zeros are compensated through the state trajectory generation
by time axis reversal. Discretization zeros are unstable when the relative order of the continuous time
plant is greater than two even without continuous-time unstable zeros. The discretization zeros are
stably inverted by the multirate feedforward control.

The tracking control performance is summarized in Tabs. 9.1-9.3 and Figs. 9.1 and 9.2. Strate-
gies for compensating unstable intrinsic zeros and discretization zeros with trajectory preview are as

follows:

e Infinite (sufficiently long) time preactuation is possible
(Truncated) preactuation perfect tracking control (PPTC) proposed in Chapter 2 is recom-
mended. “Sufficiently long time” means enough long time compared to the time constant of
unstable zeros. This method generates smooth and natural control input compared to FPPTC
method. The truncation effect is shown in Figs. 3.6 and 3.7. The truncation effect decays expo-
nentially by longer preactuation. These figures show the need of zero-order-hold consideration

and compensation by the multirate feedforward. According to the experimental results shown
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in Section 2.6, the maximum error is reduced by 93 % and 43 % compared to ZPETC method
and CPMI method, respectively.

Finite time preactuation is possible

Finite preactuation perfect tracking control (FPPTC) method proposed in Chapter 3 is rec-
ommended. FPPTC method regenerates a state trajectory by redundant order polynomial
to match the state variable after the preactuation. Although this method abandons perfect
tracking during preactuation, it guarantees perfect tracking after preactuation regardless the
preactuation time (see Fig. 9.2). According to the experimental results, the maximum tracking
error is reduced by 66 % and 34 % compared to TSA method and truncated PPTC method,
respectively (see Section 3.7).

Minimum time preactuation is desired

Minimum time preactuation perfect tracking control proposed in Chapter 4 is recommended.
It generates an optimal state trajectory for a given reference and minimum feasible time while
explicitly considering the actuator, i.e. peak force, and stroke, i.e. maximum undershoot,
limitations of the system. A multirate feedforward scheme is subsequently presented to obtain
a discretized control input that perfectly tracks the designed optimal continuous state trajectory.
In comparison to conventional finite preactuation methods in simulation, the proposed approach
reaches an order of magnitude lower tracking error bounds (see Section 4.3).

Preactuation is not implementable

Optimal state trajectory generation method without preactuation proposed in Chapter 5 is rec-
ommended. The original state trajectory, which requires the infinite preactuation, is generated
by PPTC method. Then we regenerate the state trajectory between the start and end time
of the reference motion trajectory. This method is an extension of the method proposed in
Chapter 4. In the method of Chapter 4, perfect tracking after preactuation is guaranteed by re-
generating the state trajectory during preactuation, whereas this method guarantees only after
the end of the reference motion. The state trajectory during the reference motion is optimized
with respect to the control input and plant output constraints. A multirate feedforward scheme,
which is a stable inversion for unstable discretization zeros, is subsequently presented to obtain a
discretized control input that perfectly tracks the designed optimal continuous state trajectory.
Without preactuation, it achieves smaller undershoot than ZMETC and smaller tracking error

than ZPETC (see Section 5.4).
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Table 9.1 Comparison between infinite time preactuation methods in simulation. Model shown

in Fig. 4.1 is used for the benchmark.

Methods Max error Preview time Preactuation time Perfect tracking period Reference
CPMI 20.0 pm  Infinite Infinite No PTC achieved [70] (see Section 2.3.2)
PPTC 0.00491* pm  Infinite Infinite Every nT, for all time  Chapter 2

* Intersample tracking error

Table 9.2 Comparison between finite time preactuation methods in simulation. Model shown
in Fig. 4.1 is used for the benchmark.

Methods Max error Preview time Preactuation time Perfect tracking period Reference

Truncated CPMI 21.6 pm (tp, = —67) Infinite Finite No PTC achieved (see Section 3.4)
Truncated PPTC 2.22 pm (tpq = —67) Infinite Finite No PTC achieved (see Section 3.4)

TSA 5.49 pm (tp, = —67) Finite Finite Every T, for tiaj <t [130] (see Section 3.3)
FPPTC 0.359 pm (tp, = —67) Infinite Finite Every nT,, for 0 <t Chapter 3

Minimum time PPTC  48.9 um (tp, = —2.47) Infinite Finite Every nT,, for 0 <t Chapter 4

Table 9.3 Comparison between no preactuation methods in simulation. Model shown in Fig.
4.1 is used for the benchmark.

Methods Max error Preview time Preactuation time Perfect tracking period Reference

NPZI 1024 pm 0 0 Every T, for tyaj <t [30] (Section 2.3.1)
ZMETC 1360 pgm 0O 0 No PTC achieved [119] (Section 2.3.1)
ZPETC 767 pm or 658* ym 0 or Finite* 0 or Finite* Every T, for tyaj <t [59] (Section 2.3.1)
Opt MRFF 212 ym Infinite 0 Every nT, for a5 <t  Chapter 5

* with a few samples of preview and preactuation to achieve zero-phase-error
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Figure 9.1 Relationship between the maximum tracking error ||e(t)||oo, (¥¢) and the preactua-

tion time. 6th order plant shown in Fig. 4.1 is used for this comparison. Corresponding sections
are i) NPZI, ZMETC, and ZPETC (Section 2.3.1), ii) Optimal MRFF (Chapter 5), iii) Trun-
cated CPMI (Section 2.3.2), iv) Truncated PPTC (Chapter 2), v) TSA (Section 3.3), and vi)
FPPTC (Chapter 3 and 4). As for FPPTC, the implementation shown in Section 4.2 is applied.
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Figure 9.2 Relationship between the maximum tracking error and the preactuation time during

the step motion. FPPTC achieves the perfect tracking for every T, after preactuation. After

the preactuation, the waveform of FPPTC is same regardless of the preactuation time (see Fig.
3.11(d)). The value of ||e(t)||co, (0 < ¢ < tiraj) in FPPTC is intersample tracking error.
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For a high-order identified nominal model, multirate feedforward based on modal form proposed
in Chapter 6 is recommended. Multirate feedforward control has been proposed to achieve perfect
tracking for a plant with unstable discretization zeros. However, multirate feedforward control requires
controllable canonical form and inversion of a controllability matrix, both of which are known as
numerically ill-conditioned. Chapter 6 proposed a multirate feedforward control method based on
modal form to address these problems. Moreover, the intersample behavior is improved compared
to the conventional full order multirate feedforward. The effectiveness of the proposed method is
validated through simulation results.

In Part II, tracking control methods for pneumatically actuated stage with input delay and internal
delay were proposed. The aim of this part is to replace the linear motors implemented on coarse stages
with the pneumatic actuator. The benefits are lightweight, low price, and low heat generation. How-
ever, it has following disadvantages: nonlinearity, delay, and position-dependent resonances. These
disadvantages limit the control performance. Because of these disadvantages, pneumatic actuators are
not commonly used in precision motion control applications [102].

Chapter 7 proposed one type of a modified Smith predictor, which can apply integrative system. The
proposed method achieves maximum tracking error 135 ym and standard deviation of the tracking
error 19.5 pum (see Fig. 7.12 and Tab. 7.3). The results are considered as very accurate because
literature [113] states that the positioning accuracy of pneumatic actuated systems is 100 — 500 pm
at best. This method can be applied not only pneumatic actuator only but also system with bilateral
teleoperation and chemical plants and so on.

Chapter 8 proposed a wave equation-based model, which can fit the position-dependent pressure res-
onances based on delay elements, taking into account the damping. Wave equation model is composed
of delay elements (internal delay) and a first-order filter. Using this model, a wave cancellation filter
is proposed for canceling all the resonances and anti-resonances. This filter comprises delay elements
and a first-order filter. Note that, commonly, wave equation model and controller ignores the damping
terms. The damping considerations for the controller is important for a stability analysis in frequency
domain. The proposed method can model the damping of the resonances and anti-resonances sepa-
rately. The experimental results indicate that —19 dB, —23 dB, and —16 dB gain attenuations are
achieved for the first, second, and third modes, respectively (see Fig. 8.14(d)).

As a conclusion, this dissertation succeeded to present strategies to control the nonminimum phase
systems, which are difficult to control. The use of expensive and heavy linear motors has become
a bottleneck for the control of the large-scale positioning stage. However, the use of inexpensive
pneumatic actuator was conventionally avoided because of its input delays and internal delays. The

internal delay caused by wave equation brings position dependent resonances. By applying proposed
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method, it becomes easier to control the large-scale positioning stage by the pneumatic actuator.
Generally, the mechanical structure is rigorously designed so as not to have unstable zeros and delays
to the extent possible. When unstable zeros were inevitable, perfect tracking was abandoned because
of the approximated inverse system. The effectivenesses of all the proposed methods are demonstrated
by simulations and experiments dealing with high-precision positioning stages with nonminimum phase
characteristics. This thesis concludes that, with the proposed methods, the constraints on the design

of the mechanical structure are relaxed in the applications and new options are presented.
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Appendix A

Derivation of model (2.39)

This appendix formulates a model for a high-precision positioning stage shown in Figs. 2.5 and A.1.
This stage consists of a coarse stage with a long stroke and a fine stage with a short stroke. This is a

typical design for high-precision mechatronics such as scanning states [1,156] and HDDs [157,158].

A.1 Structure of the stage

To achieve high control performance, a contactless fine stage is desirable because this structure can
remarkably reduce friction. This structure, however, needs gravity compensation. For this purpose, air
bearing systems or magnetic levitation systems are often used [159] [160]. Although magnetic levitation
systems have advantages of vacuum compatibility, they also have a disadvantage of generating heat
and difficulty of controlling stages compared to air bearing systems. The heat generated by coils could
change characteristics of actuators and sensors, and lead to degrade positioning resolution [82]. On the
other hand, due to simple structure, air bearing systems are lightweight and cost-effective compared
to magnetic levitation systems. Because of these reasons, this stage has a 6-DOF air bearing called
gravity canceller [78]. The picture and schematic of the gravity canceller are shown in Fig. A.3. The
gravity canceller compensates for the gravitational force experienced by the fine stage and supports its
6-DOF without friction. The gravity canceller is composed of three parts: the air gyro, the planar air
bearing and the air bearing actuator that supports the (6,,6,,6.), (z,y) and (z)-directional motion,
respectively. As shown in Fig. A.3, the air gyro is shaped like a hemisphere. The fine stage slides
on the hemispheric surface of the air gyro with an air gap of a few micrometers. In this thesis, the
center of the hemisphere is called the CoR. In other words, the radius of the curvature of the air gyro
determines the height of the CoR.

A drawback of this structure is a kinetically fixed CoR. The CoG, CoR, the actuation point, and

the measurement point are not always at the same points. This causes the coupling between the
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translational motion and rotational motion (i.e.  and 6,). We have investigated this phenomena and
proposes decoupling methods using multiple actuators [51,79,161].

The actuator and sensor arrangement, of the fine stage is shown in Fig. A.1. As shown in Fig. A.2
and Fig. A.1(a), the fine stage has two voice coil motors (VCMs) in the x direction. By using thrust

distribution, the height of the actuation point can be changed arbitrarily.
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Appendix A. Derivation of model (2.39)

Table A.1 Model parameters.

Symbol Meaning Value

Tm Measured position of the fine stage -

Tg1 Position of the CoG of the planar air bearing and the air gyro -

Tg2 Position of the CoG of the fine stage -

0y Measured attitude angle of the fine stage -

fz Input force of the fine stage in the x direction -

Ty Input torque of the fine stage in the 6, direction -

M1 Mass of the planar air bearing and the air gyro 0.077 kg

Cr1 Viscosity coefficient in the z,; motion 430 N/(m/s)
K. Spring coefficient in the x4, motion 11000 N/m
Mo Mass of the fine stage 5.3 kg

Joy Moment of inertia of the fine stage 0.10 kgm?
Coy Viscosity coefficient of the fine stage in the 8, motion 1.6 Nm/(rad/s)
Koy Spring coefficient of the fine stage in the 6, motion 1200 Nm/rad
Ly, Distance between the measurement point of x,, and the CoR —0.028 m
Ly Distance between the CoR and the CoG of the fine stage —0.051m
Ly, Distance between the CoR of the fine stage and the actuation point changeable

A.2 Model derivation

A2.1

Lagrange’s equations

The definitions of symbols are shown in Tab. A.1. In this section, Lagrange’s equations are formu-

lated on the basis of the model shown in Fig. 2.6 and Tab. A.1. First, the relationship between x41,

Z42, and 0, is expressed by

l‘gg = LUgl

J,‘gg = SL‘gl

+ Lgosin(6,),
+ Lga cos(6,)0,.

(A1)
(A.2)

The kinetic energy T, the potential energy U, the dissipation function B, and the work W are defined

as follows:
T —
2
1
U=-K,
2
B = 1
2
W=f,[z

1 . 1
*Mmll'?]l + -

1 .
-2 2
9 z2$92 + §J9y0y,
1
2
1xgl + =

5 dez + LgoMyog cos(by),

. 1 :
7Cw1$31 + 5093/05’

g1 T Lz sin(6y)] + 7,0,
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According to (A.3) and (A.4), the Lagrangian L =T — U is given by

1 , 1 , 212 1
L= §Mx1x§1 + 5 Ma2 Tg1 + Lg2 cos(Gy)Gy] + §J9y95
1 1
—§Kz1x§1 — §K,,y9§ — LgaMyagcos(6,). (A7)

Lagrange’s equations are given by

d (0L oL 0B oW |
% (aqz'> B a(h' * aqz‘ B 3%‘ (Z B 172)’ (A'S)

where ¢; and ¢o denote the generalized coordinates, ¢1 = x4 and g2 = 0,, respectively. Finally,

according to (A.1)-(A.8), the following equations (A.9) and (A.10) are obtained:

Zg1(My1 + Myo) + Cridgr + Kpiz g

+MyoLgo [cos(Hy)Hy — sin(ﬁy)éﬂ = fu, (A.9)
MyoLgo [fégl cos(,) — gsin(0,) + L,o0, cos*(0,)

_ngéi sin(6,) cos(Hy)] + JoyBy + Coyb, + K, 0,
=Ty + foLyscos(fy). (A.10)

A.2.2 Linearization

Assuming cos(6,) ~ 1,sin(0,) ~ 6,, 95 ~ 0, (A.9) and (A.10) are linearized as follows:

(Mrl + Mw2)i'g1 + Ca:lj"gl + Kz:lxgl + Mz2LgQéy = fa:a (All)
(Ma2 L2y + Joy)0y + Coyby + Koyby + Mz Lys(iig1 — g0,)

A.2.3 Transformation to measurable coordinate

The generalized coordinate x4 cannot be measured. Thus, x4 is converted to x,, by

Tm(s) _ 2g1(s) 0,(s)
Lu(s) ~ fols) T EGs) (A13)
Tm(s) _ 2g1(s) 0,(s)

Ty(s)  1y(s) +Lm7'y(s)' (A.14)
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A.2.4 Transfer functions

According to (A.11)—(A.14), transfer functions (A.15)-(A.19) are obtained.

xm(s) — [Jﬁy + foLm]\/[xl — (Lfac — Lg?)(LQZ — Lm)]sz]sz + (Cey + LermCl’l)s + Kgy + szLmle — ng]ﬂaﬂg (A15)
fx(s) D(s)

91/(5) _ [Lfm]szl + (Lfm — ng)]\frg}ég + szles + Lmeml (Alﬁ)
fa(s) D(s)

T (8) _ [Lyy My + (L, — ng)]\/jz2182 + L,,Cp18+ Ly K1 (A17)
7y(s) D(s)

Oy(s) _ (M + Myo)s® + Cors + K (A.18)
7y(s) D(s)

D(s)=[(My1 + My2)Joy + Myt MyaL2]s* + (M1 + My2)Cay + (Joy + MyaL2y)Con s>+
[(JOy + ]\/[.TQL_(Q]z)Kml + (]\/le + A[T,Q)(Key - ]\/[.’IJQLQQQ) + C@yOﬂcl]sQ+

[091/Km1 + Cacl(KF)y - Lg2Mr29)]5 + Kﬂcl(KGy - Lg2j\/1m2g) (Alg)
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